R2-6

SASIMI 2013 Proceedings

A Parallel Simulated Annealing Algorithm with Look-ahead Neighbor Solution
Generation

Yusuke Ota

Kazuhito Ito

Graduate School of Science and Engineering
Saitama University
255 Shimookubo, Sakura-ku, Saitama, 338-8570, Japan
{yuusuke,kazuhito} @elc.ees.saitama-u.ac.jp

Abstract— Simulated annealing (SA) is a general method
to solve combinational optimization problems. SA generates a
neighbor solution from a current solution randomly and evaluates
the solution with a cost function. If the neighbor solution is better
than the current solution, or otherwise stochastically, the neigh-
bor solution is accepted as a new current solution. This process is
iterated many times and therefore SA needs long execution time.
‘We propose a fast SA method where some neighbor solutions are
generated at a time in a look-ahead manner and evaluated in par-
allel. To increase the efficiency of the parallelized SA, a method to
adaptively generate neighbor solutions is proposed to reduce void
solutions not used in a SA chain.

I. INTRODUCTION

Simulated annealing (SA) is well known and widely used
as a metaheuristic algorithm to find a locally optimal solution
of a combinational optimization problem with large solution
space [1]. In the area of LSI design, SA is applied to many
kinds of design problems including floorplanning [2] and task
scheduling [3, 4].

SA works as follows. A neighbor solution x’ is generated,
which is different in part from a current solution candidate x,
and evaluated by computing a cost function of x'. By compar-
ing the cost functions of x and x/, if x’ is better than x, x is
accepted as a new solution candidate and it replaces x. If x’
is worse than x, ¥’ is stochastically accepted at the probabil-
ity calculated from the difference of the cost functions and the
temperature which is a parameter controlling the SA process.
Otherwise, x’ is rejected. Then the series of the generation of a
neighbor solution, evaluation of the cost function, and decision
of accept/reject of the neighbor solution are performed again.
This is illustrated in Fig. 1. Let the series be called a step.
By iterating the step while gradually lowering the temperature,
SA explores the solution space to find a solution with the opti-
mal cost function. Beginning from an initial solution candidate
with a starting temperature, the step is iterated until a termina-
tion condition is satisfied. This process is called an SA chain.
To find a solution good enough, it is necessary to generate and
evaluate many neighbor solutions within the solution space.
Especially in LSI design, the solution space is increasing as
the scale of the design increases. Thus the quite large number

initial generate accept/reject the neighbor final
solution ~ neighbor evaluate solution

Oneees O PP PO PO ++20

step step

Fig. 1. Basic operation of simulated annealing (SA).

of solutions need to be evaluated to find a good solution within
a large solution space. In addition, the criterion of the solution
optimality is getting more and more complicated in the era of
deep submicron technologies, which requires longer time to
evaluate the cost function. Both the larger solution space and
the complicated cost function increase the execution time of
SA. An execution scheme of SA is desired which finds a good
solution within a short execution time.

In this paper, a method to speed up an SA chain is proposed
where more than one neighbor solution is generated in a look-
ahead manner and these neighbor solutions are evaluated in
parallel. Since the SA chain is not altered, the already tuned
SA parameters can be reused. In addition, the parallelization
of cost function evaluation is not necessary. Consequently, the
proposed method has an advantage that the implementation of
the given optimization problem is straightforward.

II. SIMULATED ANNEALING AND ITS FAST EXECUTION

A. Simulated annealing algorithm

The simulated annealing (SA) algorithm [1] is briefly re-
viewed. SA is a methheuristic algorithm to find an optimal so-
Iution to a given combinational optimization problem, by sim-
ulating the physical phenomenon where a material consisting
of particles settles into a state with the minimum energy as the
temperature of the material descends gradually. In SA, a neigh-
bor solution is generated from a solution candidate, and the
cost function of the neighbor solution is evaluated. Whether
the neighbor solution is accepted and it replaces the current
solution candidate or not is determined probabilistically de-
pending on the temperature. The stochastic acceptance of the
neighbor solution avoids the solution to be trapped to a local
optimum and thus allows the exploration in the solution space.

Two schemes of SA algorithm exist which use different
scheduling of descending the tempereture as shown in Fig. 2.

- 106 -

Input: Cost function F(-)
Start temperature 75 and End temperature 7g
Temperature descending factor o/(< 1)
Iteration counts Ny, N,

Output: A solution y with the minimized F (y)

Get an initial solution candidate x and evaluate F (x)
T — TS
while T > Tr do
fori=1to N; do
Generate a neighbor solution x’ from x and evaluate F(x')
if F(x') < F(x) then
x < x' (accept by improvement)
else if § in Eq. (1) > r then (r is a random value ranging from 0 to 1)
x « x’ (accept probabilistically)
else
Discard x/
end if
end for
T — ol
end while

(a)

Get an initial solution candidate x and evaluate F (x)
T —Tg
for k=1to N, do
Generate a neighbor solution x’ from x and evaluate F(x')
if F(x') < F(x) then
x « x’ (accept by improvement)
else if § in Eq. (1) > r then (r is a random value ranging from 0 to 1)
x « x’ (accept probabilistically)
T «—oT
if 7T <Tg thenT « Ty
else
Discard x’
end if
end for

(b)

Fig. 2. The basic simulated annealing algorithms. (a) scheme 1. (b) scheme
2. The input and output are common to both schemes.

The SA algorithm in Fig. 2 minimizes the cost function. Al-
though SA can be applied to the maximization of the cost func-
tion, only the minimization of the cost function is considered
hereafter for simplicity.

The SA algorithm is described as follows. At first, a solution
to the given problem is obtained. This is the initial solution of
an SA chain and set it as a current solution candidate x. The
cost function F(x) is evaluated. The temperature parameter T
is initialized to the start temperature 75. A neighbor solution
x' is generated which partly differs from x and F(x') is evalu-
ated. If F(x') < F(x), X' is accepted because a better solution
is found. On the other hand, if F(x") > F(x), then
F(x') —F(x))

(D

- (510

is calculated and x’ is accepted at the probability of {. That is,
x'is accepted if { is larger than a random value ranging from 0
to 1. If x’ is accepted, it replaces x. Otherwise, x’ is discarded.
This procedure is called a step.

T is decreased using a descending factor o < 1 as

T — aT)

when the steps are iterated for a predetermined number of

generate accept/reject the neighbor
neighbor evaluate/

oo oo il
e

©

Fig. 3. Parallelization of SA. (a) parallelization of neighbor generation and
evaluation. (b) evaluations in parallel. (c) parallel SA chains.

times (N; in scheme 1) or when x’ is accepted probabilistically
despite F(x') > F(x) (scheme 2).

The start and end temperatures Ty and Ty are chosen so that
¢ in Eq. (1) is about 1/2 when T = Ty and almost zero when
T = Tg. While T changes from Ts to T only once in scheme
1, T changes from T to Tg and then goes back to Ts for several
times in scheme 2.

B. Related work

A two-stage SA method [5] is proposed as a technique to re-
duce the execution time of SA. In this method, first a solution
with a good cost function is obtained by some method other
than SA. Then using the solution as the initial solution candi-
date, an SA chain is executed with a low starting temperature.
For the initial solution nearer to the optimal solution, a lower
starting temperature can be chosen and hence the SA chain is
executed in a shorter time. The two-stage SA is successfully
applied to some area of optimization problems [6]. Conversely,
the reduction of the execution time of SA cannot be expected
unless a fairly good initial solution can be obtained. The appli-
cation of the two-stage SA is generally a difficult task because
it requires the analysis of the target optimization problem and
the development of a rather simple algorithm to obtain a good
initial solution.

In general, parallel processing is effective in speeding up
tasks. Computers equipped a microprocessor with a multiple
core are used in common these days and hence the parallel
processing can be realized without special facilities. The par-
allelization of SA is possible in three levels as illustrated in
Fig. 3. Those are, (a) parallelizing the generation of a neighbor
solution and/or parallelizing the evaluation of the cost func-
tion, (b) generating two or more neighbor solutions and eval-
uating the solutions in parallel, and (c) executing two or more
SA chains in parallel (referred to as asynchronous method in
[7]). In (a), the procedure of neighbor solution generation
and/or the procedure of evaluating the cost function need to
be parallelized. Extracting the parallelism from the procedures
would require deep understanding of them and the develop-
ment of a parallel processing algorithm is also necessary. To
make matters worse, the given optimization problem might not
contain enough parallelism in nature. In (c) (the asynchronous

- 107 -

xl=N(x)

Fig. 4. Proposed parallelization methods of SA. (a) Look-ahead generation
and parallel evaluation of neighbor solutions. (b) Parallel generation and
evaluation of neighbor solutions.

method), simply more than one SA chain is executed in parallel
without altering the SA procedures. If the total number of steps
is fixed at a constant, e.g., K, each of P > 1 SA chains tries only
K /P solutions within the same solution space. While the par-
allel execution at very high efficiency is possible with the asyn-
chronous method, the solution optimality may be degraded be-
cause the exploration by each SA chain is more sparse than (a)
and (b). As a method of paralleling in (b), SOEB is proposed
[7]. The SOEB is illustrated in Fig. 3(b). In this method, more
than one SA chain diverges from a current solution candidate.
After some steps are iterated in each diverged SA chain, the so-
lutions are gathered from the SA chains and compared, and the
best is selected as a new solution candidate. Then SA chains
are diverged again. SOEB performs the solution exploration
differently than the single SA chain. Therefore, tuning of the
SA parameters might be necessary to obtain a good solution.

III. PROPOSED METHOD

In this paper, a method to speed up an SA chain is proposed
where more than one neighbor solution is generated in a look-
ahead manner and these neighber solutions are evaluated in
parallel. Then, according to the evaluated cost functions and
the temperature, one of the neighbor solutions is accepted or all
are rejected. This is illustrated in Fig. 4(a). x1 = N(x) means
x1 is a neighbor solution generated from x. This method is
categorized into the type (b) of SA parallelization. The differ-
ence of the proposed method to SOEB (Fig. 3(b)) is that the
neighbor solutions are generated in a look-ahead manner and
therefore only a signle SA chain is treated, while two or more
SA chains (diverged from a solution) are treated in SOEB.

A. Acceptance and rejection of solutions in SA

Figure 5 shows the relation among solutions of a problem. In
this figure, the neighboring relation is represented by an arrow.
x is a solution and x1, x2, x3, and so on are the neighbor solu-
tions of x. Similarly, x11, x12, x13, and so on are the neighbor
solutions of x1. In SA, a neighbor solution x1 is generated
from a current solution candidate x, the cost function of x1 is
evaluated, and x1 is either accepted or rejected. When x1 is
accepted, x1 becomes a new solution candidate. Then a neigh-
bor solution x11 is generated from x1 and evaluated. When
x11 is rejected, x1 remains as a current solution candidate and
another neighbor solution x12 is generated from x1.

Fig. 5. Neighbor relations among solutions.

=— generate
the 1st neighbor

— accept

————— » reject

Fig. 6. The SA tree of solutions traversed by an SA chain.

As the neighbor solution is generated and either accepted
or rejected, a different combination of solutions is traversed
by SA steps. Thus a tree, where the nodes denote solutions
and the directed edges denote acceptance/rejection relations, is
constructed as shown in Fig. 6. Let the tree called an SA tree.
A directed path rooted from the initial solution is selected in
the SA tree according to the acceptance and rejection of neigh-
bor solutions. The path in the SA tree is the SA chain. The
solutions not on the SA chain are not visited during the explo-
ration and hence generation and evalution of the cost functions
for those solutions are not necessary.

B. Look-ahead processing of SA steps

Here a method is proposed where two or more neighbor so-
Iutions on an SA chain are generated in a look-ahead manner.
Figure 7(a) shows a set of four neighbor solutions A, B, C,
and D generated from a current solution candidate x and the
relation among them. The solution A is a neighbor solution
of x. The solutions C and D which are neighbor solutions of
A are generated by expecting A would be accepted. In addi-
tion the solution B which is another neighbor solution of x is
generated to prepare for the case of A being rejected. The cost
functions of A, B, C, and D are evaluated in parallel. Then
the combination of the acceptance or rejection of solutions is
checked. First the acceptance/rejection of A is decided based
on the cost functions F(x) and F(A). If A is accepted, then the
acceptance/rejection of C is decided based on F(A) and F(C).
In this case (A is accepted), the solution B is never visited and
hence originally the generation and evaluation of B would have
been unnecessary. Let the solution like B be called a void so-
lution. Similarly in the case that C is accepted, D becomes a
void solution. If C is rejeced, then the acceptance/rejection of
D is decided based on F(A) and F (D). If A is rejected at first,
then the acceptance/rejection of B is decided based on the cost
functions F(x) and F(B). In this case (A is rejected), two so-
lutions, C and D, are void. The combination of the acceptance
and rejection of A and C and the resultant void solutions are
summarized in Table L.

- 108 -

(®)

Fig. 7. Example sets of neighbor solutions generated from x in a look-ahead
manner.

TABLE I
COMBINATION OF ACCEPT/REJECT OF SOLUTIONS FOR FIG. 7(A)

A C void solutions ratio new candidate
accept | accept B,D p? C
. D (D accepted)
accept | reject B p(1—p) AD rejec}:e d)
. B (B accepted)
reject - C.D I=p x (B rejected)

C. Generation of look-ahead neighbor solutions

The number of void solutions depends on the combination
of the acceptance and rejection of the neighbor solutions. In
addition, the average number of void solutions depends on the
ratio of the combination of acceptance and rejection of the so-
lutions. Table I also shows the ratio of each combination of
acceptance/rejection of A and C for the solutions of Fig. 7(a)
assuming the acceptance probability of A and C are both p.
Note that when the probability of accepting a solution is p, the
probability of rejecting it is 1 — p. The average number of void
solutions is given as p> — p+ 2. For another set of neighbor so-
lutions show in Fig. 7(b), the number of void solutions depends
on the acceptance/rejection of A and B, and its average is given
as —p?+2p+1. For p=0.4 and p = 0.7, the average number
of void solutions are calculated as shown in Table II. In the case
of p = 0.4, the set of neighbor solutions in Fig. 7(b) is prefer-
able because it achieves the less number of void solutions than
the set of neighbor solutions in Fig. 7(a). On the other hand, in
the case of p = 0.7, Fig. 7(a) is preferable. These results imply
that the set of neighbor solutions with the least void solutions
varies depending on the probability p of the solution accep-
tance (either the cost function is improved or stochastically).
In order to maximize the efficiency of the solution exploration
by minimizing void solutions, it is important to appropriately
determine the set of look-ahead neighbor solutions to be gen-
erated based on the solution acceptance probability p.

Since an SA chain becomes a path on the SA tree, the solu-
tions not on the path are void. Therefore, to minimize the void
solutions, it is desired that the neighbor solutions generated in
a look-ahead manner forms a directed path. However, the path
is revealed only after the steps are executed on the solutions
and it is difficult to predict which neighbor solutions should be
generated in advance because the acceptance and rejection of
solutions are influenced by a stochastical factor.

The acceptance probability of a solution is considered to be
equal for continuous M solutions if M is not so large. Thus a
method to generate M neighbor solutions is proposed so that
the average number of void solutions would be minimized for

TABLE II
COMPARISON OF THE AVERAGE NUMBER VOID SOLUTIONS

neighbor | average # void # void solutions
solutions solutions p=04 | p=0.7
Fig. 7(a) PP —p+2 1.76 1.79
Fig. 7(b) | —p?>+2p+1 1.64 1.91

(0)0< p<023

(b)0.23< p<0.28

(©)028<p<032 (d)032< p<044 ()0.44< p<0.57
o
bl ®
- © @®
®
P ®
IR g ®
SO ®
® ®
® ®
® ®
® T ¥ ®
®

()0.57< p<0.69 (£)0.69< p<0.73 (h)0.73< p<0.78 (1) 0.78< p<1

Fig. 8. Neighbor solutions with the least void solutions for the acceptance
probability p (M = T7).

a given acceptance probability p (0 < p < 1). All the possible
sub-trees consisting of M neighbor solutions are enumerated
for the SA tree shown in Fig. 6. For M =7, there exsit 429 dif-
ferent sub-trees. Then for a given value of p, the sub-tree with
the least void solutions is identified. Figure 8 shows the identi-
fied sub-trees for M = 7. If two or more sub-trees are with the
least void solutions, one is chosen to minimize the number of
different sub-trees. By using the average of the cost functions
of the previously generated M solution as F(x) in Eq. (1), { is
calculated with the cost function F(x) of the current solution
candidate x and the temperature 7. Then one of the sub-trees
shown in Fig. 8 is selected assuming the acceptance probability
p = C to generate the next M neighbor solutions.

D. Parallel generation of neighbor solutions

In general, there are dependencies among neighbor solutions
and hence there exists precedence in generating neighbor so-
lutions. For example in Fig. 8(b), the generation of solution G
depends on the solution A, and it implies that A must be gen-
erated before G is generated. The set of neighbor solutions in
Fig. 8(a) is an exception where there is no dependencies among
the neighbor solutions. Therefore in case of the set of neigh-
bor solutions in Fig. 8(a) is to be generated, the generation of
neighbor solutions as well as the evaluation are done in paral-
lel as shown in Fig. 4(b) to further speed up the procedure of

- 109 -

TABLE III
SA PARAMETERS FOR FLOORPLANNING PROBLEM
Basic Async. SOEB-F | Proposed
N 10480 1497 1497 1497
Ny 1.2x 107 | 1714285 | 1714285 | 1714285
sync. — — 1145 —

the SA steps. Otherwise, the neighbor solutions are genereted
serially as shown in Fig. 4(a).

IV. EXPERIMENTAL RESULTS

The proposed method was implemented using C++ pro-
gramming language and run on a PC with a microproces-
sor AMD FX-8120 (3.1GHz, 8 physical cores) and 8 GB of
main memory working with CentOS 6.2. The parallel process-
ing was programmed as the multithreading using boost::thread
routines of Boost C++ Libraries. The proposed method was
implemented in two ways. In “Proposed 1,” all the neighbor
solutions are serially generated as shown in Fig. 4(a). In “Pro-
posed 2,” neighbor solutions are generated partly in parallel
as described in Sect. IIl.D. For comparison, the basic (non-
parallelized) SA, the asynchronous method [7], and SOEB-F
method [7] were also implemented for both schemes 1 and 2.
In the proposed method, the performance was strangely de-
graded when 8 neighbor solutions are evaluated using all the
8 cores, and the reason of the degradation is unknown. There-
fore the experiments were executed so that 7 neighbor solu-
tions were generated and evaluated in parallel using 7 cores.

A. Floorplanning

N300 in GSRC benchmark [8] was used for the experiment.
300 modules are placed without overlap and the area of the
rectangle bounding the modules is minimized. The sequence-
pair [2] is used to express solutions. The SA parameters are
Ts=1.0x 10*, Tz = 0.1, ¢ = 0.99, and as shown in Table III.
The parameters Ny and N, were determined so that the total
number of neighbor solutions is about 1.2 x 107 for all the
methods. The average CPU time and the dead space are mea-
sured by executing the SA 10 times for each method.

The CPU times are compared in Fig. 9. The conventional
methods achieve 4.2 times speed up and the proposed method
achieves 3.9 times speed up. Since the neighbor solutions are
generated sequentially in a single thread and more synchro-
nizations among threads are necessary in the proposed method,
the CPU time was longer than the conventional methods.

The dead space of the obtained floorplan is compared in
Fig. 10. The smaller the dead space is, the more compact the
floorplan is. In the case of scheme 1, the proposed method
obtained a results as good as the basic method. The number
of neighbor solutions generated for an SA chain is reduced in
the conventional parallel method and therefore the solution ex-
ploration becomes sparse. On the other hand, in the proposed
method, the exploration of solutions is essentially the same as
the basic method. Thus similar solutions were obtained by the
basic and the proposed methods.

140 Tpy—py
120 1409 404

100 -

CPU time [min]
N A O O®
S © © o
L \

0 4
scheme 1 2 1 2 1 2 1 2 1 2
Basic Async. SOEB-F Proposed 1 Proposed 2

Fig. 9. CPU time for floorplanning.

30

25 4

20

Dead space [%]

scheme 1 2 1 2 1 2 1 2 1 2
Basic Async. SOEB-F Proposed 1 Proposed 2

Fig. 10. Dead space of the floorplan.

The number of the sub-trees of neighbor solutions gener-
ated in the proposed method and the number of void solutions
in each sub-tree were counted. Table IV shows the ratio of the
generated 9 types of sub-trees and the percentage of which so-
lution was the resultant (the next solution candidate) in each
sub-tree. For example, 1.27% of all the generated sub-trees
were the sub-tree of Fig. 8(d), the resultant solution was the
current solution candidate x in 2.3% (the solutions A, B, C,
and D were rejected and 3 solutions E, F, and G were void), the
resultant solution was A in 8.1% (the solutions E and F were
rejected, 4 solutions B, C, D, and G were void), and so on. The
average ratio of void solutions was 62.5% for the sub-tree (d).
The total ratio of void solutions was 37.1%. If the neighbor
solutions traversed in the basic SA were divided into sets of 7
consecutive solutions and the best sub-tree of 7 neighbor solu-
tions were assigned to each set, the ratio of void solutions is
24.7%. This is the lower bound of the ratio of void solutions
and it can be seen that the proposed method generates appro-
priate combinations of neighbor solutions.

B. Task scheduling

In high-level synthesis for LSI, the minimization of en-
ergy dissipation in data communication among functional units
(FUs) and registers (Regs) is considered. It can be achieved
by concentrating the data communications onto a small num-
ber of pairs of FUs and Regs and highly communicating FUs
and Regs are placed as near as possible. The solution to this
problem requires optimizing the combination of the operation
(task) scheduling, the binding operations to FUs and data to
Regs, and the placement. In [3, 4], SA is used to find the task
schedule which results in the binding where the sum of square
of the number of data communications on each data communi-
cation link between FUs and Regs is maximized. The proposed

- 110 -

TABLE IV
THE RATIO OF SUB-TREE PATTERNS AND VOID SOLUTIONS IN FLOORPLANNING

Generated Percentage (%) of the resultant solution (in parenthesis is # void solutions) Void
Sub-tree | Ratio (%) X A B C D E F G solutions (%)
(a) 94.13 47.2(0) | 15.8(6) | 10.4(5) 7.6 (4) 6.0 (3) 5.0(2) 4.3 (1) 3.7 (0) 29.9
(b) 0.72 0.6 (1) 22.5(5) | 22.7(5) 8.4 (4) 3.6 (3) 1.5(2) 0.7 (1) 40.0 (5) 67.8
(c) 0.51 1.2(2) 8.5(4) 21.8 (5) 8.1 (4) 3.503) 1.3(2) 41.5(05) | 14.04) 65.0
(d) 1.27 233 8.1 (4) 7.9 (4) 7.7 (4) 3.0(3) 425(05) | 143@) | 1424 62.5
(e) 1.04 4.8 (4) 7.4 (4) 7.2 (4) 7.5 (4) 13.8(4) | 144 4) | 1424) | 30.6(4) 57.1
® 0.76 113G) | 73@) | 68@) | 145@3) | 142(3) | 139@ | 93(3) | 226(3) 542
@ 0.23 113G5) | 6.7(@) | 206(G) | 144(@) | 133@) | 953) | 69(2) | 173(Q2) 534
(h) 0.27 103G5) | 21.7(5) | 218() | 142(&) | 923) | 66@2) | 48(D) | 115(1) 54.7
(1) 1.08 31.5(6) | 209(5) | 13.8(4) 9.7 (3) 6.9 (2) 4.8 (1) 3.3(0) 9.0 (0) 56.7
TABLE V 500 LY
SA PARAMETERS FOR TASK SCHEDULING PROBLEM 400 1
Basic Async. | SOEB-F | Proposed =
N 350 50 50 50 £ 3001
N, 401100 | 57300 57300 57300 § 200 -
sync. — — 1146 — =
© 100 -
method is applied to the SA in this problem. The example sch(;m 1 o 1 o 1 24 o 4 o
processing algorithm is the 5th order wave filter unfolded by Basic Async. SOEB-F Proposed 1 Proposed 2

factor 3. The SA parameters are 75 = 1.0 X 103, Tz = 0.01,
o = 0.99, and as shown in Table V. The parameters N; and
N> were determined so that the total number of neighbor solu-
tions is about 4 x 10° for all the methods. The average CPU
time and the sum of square of number data communication are
measured by executing the SA 10 times for each method.

The CPU times of SAs are compared in Fig. 11. For
scheme 1, the asynchronous, SOEB-F, and Proposed 2 meth-
ods achieve 3.2 times, 4.6 times, and 2.8 times speed up, re-
spectively. The optimized results are shown in Fig. 12. The
larger the score is, the better the result is. A trend can be seen
that scheme 1 obtains the better result than scheme 2. Generat-
ing a neighbor solution in the exploration of the task schedul-
ing takes a rather long time. Therefore Proposed 2 is faster
than Proposed 1 since neighbor solution generation is done in
parallel in more cases and hence the necessary CPU time is re-
duced. No significant difference of results between the meth-
ods exists. The proposed method achieves the speed up of SA
without degrading the quality of the solution.

V. CONCLUSIONS

In this paper, a method to parallelize a SA chain is proposed
to reduce the execution time where two or more neighbor solu-
tions are generated in a look-ahead manner and these solutions
are evaluated in parallel. A method to generate neighbor solu-
tions with minimized void solutions is also presented. In the
case of the floorplanning problems, 3.9 times speed up against
the basic SA was achieved with 7 cores of CPU without de-
grading the result. For the task scheduling problem, 2.8 times
speed up was achieved and a result of comparable quality was
obtained with the proposed method.

Studying the effectiveness of the proposed method in the
case of higher parallelism and the parallel execution models
other than multithreading remains as future work.

Fig.

Fig.

(1]

(2]

(3]

(4]

(5]
(6]

(71

(8]

- 111 -

1

—_

. CPU time for operation scheduling.

4000
3500
3000 -
2500 -
2000 -
1500 -
1000 +
500 -
0 4

scheme 1 2 1 2 1 2 1 2 1 2
Basic Async. SOEB-F Proposed 1 Proposed 2

The sum of square of # data comm.

. The square sum of data communications.

REFERENCES

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simu-
lated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, “VLSI Module Place-
ment Based on Rectangle-Packing by the Sequence-Pair,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 12, pp. 1518-1524, 1996.

K. Ito and H. Seto, “Reducing Power Dissipation of Data Communica-
tions on LSI with Scheduling Exploration,” IPSJ Trans. System Level
Design Methodology, vol. 2, pp. 53-63, 2009.

H. Seto and K. Ito, ” A Resource Binding Method to Reduce Data Com-
munication Power Dissipation on LSI,” IPSJ Trans. System Level Design
Methodology, Vol. 3, pp. 257-267, 2010.

J. Varanelli and J. Cohoon, “A Two-Stage Simulated Annealing Method-
ology,” Fifth Great Lakes Symposium on VLSI, pp. 50-53, 1995.

Y. Sheng, A. Takahashi, and S. Ueno, “2-Stage Simulated Anneal-
ing with Crossover Operator for 3D-Packing Volume Minimization,”
Proc. SASIMI 2012, pp. 227-232, 2012.

E. Onbasoglu and L. Ozdamar, “Parallel Simulated Annealing Algo-
rithms in Global Optimization,” Journal of Global Optimization, vol. 19,
pp. 27-50, 2001.

GSRC Benchmarks, http://vlsicad.eecs.umich.edu/BK/FPUtils/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

