
A Dynamic Offload Scheduler for spatial multitasking
on Intel Xeon Phi Coprocessor

Takamichi Miyamoto, Kazuhisa Ishizaka, Takeo Hosomi

Green Platform Research Laboratories
NEC Corporation

Shimonumabe 1753, Kawasaki, Kanagawa, JAPAN
{t-miyamoto@ap, k-ishizaka@ay, hosomi@ah}.jp.nec.com

Abstract— Intel Xeon Phi Coprocessor appears and

it fully supports multitasking, but it does not auto-

matically ensure high performance in this case. A

conventional task level resource allocation scheduler

could be used, but a processor utilization of the Xeon

Phi is low because of idle time on the Xeon Phi. In

this paper, we propose a dynamic offload scheduler

which assigns processor resources of the Xeon Phi to

tasks by an offload level. We describe an effectiveness

of the proposed method with evaluations.

I. Introduction

Many-core accelerators have become widely used as a
powerful and power efficient computing coprocessor for
high performance systems. A range of applications, from
scientific computing to multimedia, are well suited for the
many-core accelerators to achieve large speedups [1, 2].
However, General-Purpose Computing on Graphics Pro-
cessing Unit (GPGPUs) [3, 4], which were the domi-
nant many-core accelerators, have very limited support
for multitasking. Few works have been done for multi-
tasking on many-core accelerators [5].

Intel’s many-core accelerator, Xeon Phi Coprocessor
(Xeon Phi) has appeared [4, 6, 7]. It supports x86 ISA and
Linux OS just like commodity Xeon processors. Thus the
Xeon Phi fully supports multitasking. Unfortunately, it
does not automatically ensure that multiple tasks will run
on the Xeon Phi with high performance. In this paper, we
discuss the performance of the Xeon Phi in multitasking
environments.

In order to use the Xeon Phi, programmers write their
programs with “offload model”. The main part of the
code runs on the host processor. The regions specified
to be offloaded by pragmas runs on the Xeon Phi. The
offload model enables to utilize the strong points of the
host processor and the Xeon Phi. The host processor
is suitable to execute a sequential part, since its single-
threaded performance is higher than that of the Xeon

Phi. The Xeon Phi is suitable to execute a parallelized
part, since its multi-threaded performance is higher than
that of the host processor.

For sharing the Xeon Phi by multiple tasks which are
written with the offload model, a task level scheduler
could be used. The scheduler manages the Xeon Phi’s
cores as a resource, and allocates parts of the resources
to tasks when the tasks are invoked. The resources are
spatially partitioned and assigned to tasks while they run.
This method will work well when the tasks run only at
the Xeon Phi. However, a low resource utilization issue
could happen when the tasks are written with the offload
model. Some regions of the tasks run only at the host
processor and the assigned Xeon Phis resource are not
used. Therefore, new scheduling method will be required
to fully utilize the Xeon Phi’s resource for the offload tasks
in the multitasking environments.

The contributions of this paper are as follows:

• We propose a dynamic offload scheduler which as-
signs processor resources of the Xeon Phi to tasks by
an offload level. It enables to allocate the resources
for the offload regions that run on the Xeon Phi, and
not to the other regions that run on the host pro-
cessor. Hence, the proposed scheduler can efficiently
utilize the resource.

• We show that the proposed scheduler works well
across our workloads and obtains a maximum of 1.62
times performance against the task level scheduler.

The rest of this paper is structured as follows. Sec-
tion II describes background and motivation in this pa-
per. Section III highlights our proposed dynamic offload
scheduler. Section IV validates the dynamic offload sched-
uler by an evaluation through our workloads. Section V
describes the related work. Finally, Section VI concludes
this work.

SASIMI 2013 ProceedingsR4-11

- 261 -

II. Background and Motivation

This section describes hardware specs and software en-
vironment of the Xeon Phi, and a problem on the Xeon
Phi shared by multiple offload model tasks (offload tasks).

A. Intel Xeon Phi Coprocessor

The Xeon Phi 5110P has 60 x86 processor cores. Each
processor core supports four hardware threads. The core
has 512-bit vector unit and 512KB L2 cache. The core is
clocked at 1.053GHz. The core uses in-order execution.
A peak single-precision performance of the Xeon Phi is
more than 2 TFLOPS. Compared these specs with Xeon
processor (Xeon) which is usually adopted as a host pro-
cessor, a single-threaded performance of the Xeon Phi is
lower than that of the Xeon because the latest Xeon is
clocked at more than 2.0 GHz and it uses out-of-order
execution. However, a multi-threaded performance of the
Xeon Phi is higher than that of the Xeon by using thread
parallelism of programs.
As a software environment, Manycore Platform Soft-

ware Stack, called MPSS, is provided by Intel. In this
environment, Linux kernel runs on the Xeon Phi. Hence,
it is easy to run multiple tasks on the Xeon Phi.

B. Multitasking for Offload Model

In order to use the Xeon Phi, programmers write their
programs with “offload model”. Figure 1 illustrates an
example code of an offload program. The code includes
an offload part to the Xeon Phi. First, the program is
executed on the host processor. Next, it is executed on
the Xeon Phi. Finally, it is executed on the host pro-
cessor. The offload part is indicated with a directive as
“#pragma offload target (mic)”. In the offload part, a
loop is parallelized by OpenMP for example, so that the
offload part is executed in parallel on the Xeon Phi.
When multiple offload tasks share the Xeon Phi, we

can use a conventional task level scheduler for utilizing
the Xeon Phi. The task level scheduler statically splits
processor resources of the Xeon Phi into the number of
tasks. And, it allocates each split processor resource to
each task. For an example which the task level scheduler
manages two tasks, it statically splits 59 cores into 30
cores and 29 cores, and it statically allocates 30 cores to
one task and allocates 29 cores to the other. Figure 2
illustrates a problem of the task level scheduler. The task
level scheduler allocates each split processor resource of
the Xeon Phi to each task while each task runs. It causes
idle time on the Xeon Phi because an execution time of
the task includes a host processor execution time. Hence,
it has a problem which a processor utilization of the Xeon
Phi is low.
There is a method to minimize the idle time on the

Xeon Phi with a programming effort in the offload task.
The programmer makes the offload region asynchronous,

// host processor part
for (i=0;i<N;i++)
A[i] = ...;

...

// Xeon Phi part
#pragma offload target(mic)
{
#pragma omp parallel for

for (i=0;i<N;i++)
B[i] = A[i];

}

// host processor part
for (i=0;i<N;i++)

... = B[i] ...;

a program code of the task
Host processor Xeon Phi

Fig. 1. An example of offloading program code for the Xeon Phi.

and overlaps the execution of the host part and the Xeon
Phi part. However, the method is not applicable to appli-
cations which have a data dependency between the host
part and the Xeon Phi part. Moreover, the method cant
not utilize the Xeon Phi resources for applications whose
execution time of the host part is much longer than taht
of the Xeon Phi part.

III. Proposed Method

This section describes our proposed method for shar-
ing the Xeon Phi by multiple offload tasks. The proposed
method “dynamic offload scheduler” is designed to im-
prove a processor utilization of the Xeon Phi. It runs on
the host processor. It cooperates with multiple tasks. It
dynamically allocates processor resources of the Xeon Phi
to each task per offload, so that each task occupies a part
of the processor resources only while each offload runs. It
minimizes idle time of the Xeon Phi.
Figure 3 illustrates a program code of a task which

cooperates with the dynamic offload scheduler. The
task has two kinds of Application Program Interfaces
(APIs) to the dynamic offload scheduler. It calls
AcquireProcessorResource() API to acquire a part of
the processor resources of the Xeon Phi before the offload
part is executed. It calls ReleaseProcessorResources()
API to release the acquired part of the processor resources
after the offload part is executed. Each task is able to
cooperate with the dynamic offload scheduler by calling
these APIs.
Figure 4 shows a flowchart of the dynamic offload sched-

uler which cooperates with the task. The flowchart of the
dynamic offload scheduler consists of four steps. Through
step S1 to step S3, the dynamic offload scheduler allo-
cates a part of idle processor resources to the task when
the task acquires processor resources. The dynamic of-

- 262 -

ta
sk

1

task1

task2

ta
sk

1

time

Xeon Phi’s
whole processor resource

Host processor’s
whole processor resource

occupied
by task2

task2
running
interval

divided two blocks

task1
running
interval

occupied
by task1

ta
sk

2
ta

sk
2

Fig. 2. Low processor utilization problem scheduled with
partitioning resources per task statically.

fload scheduler is also able to give thread affinity to the
task. And the task is able to set the thread affinity for
the offload. On step S4, the dynamic offload scheduler
marks idle processor resources when the task releases the
acquired processor resources. After that, the idle proces-
sor resources can be allocated to the other task. There-
fore, the dynamic offload scheduler is able to control a
processor resource allocation per offload.
These steps are described as follows.

S1 The dynamic offload scheduler searches idle proces-
sor resources from the available processor resource
table on demand from each task’s acquirement API.
If it is able to find them, it goes step S2. If it is not
able to find them, it repeatedly searches again.

S2 The dynamic offload scheduler changes states of the
processor resources into busy in the available proces-
sor resource table.

S3 The dynamic offload scheduler returns the processor
resources to the task. Furthermore, it is able to re-
turn a thread affinity too.

S4 The dynamic offload scheduler changes states of pro-
cessor resources into idle in the available processor
resource table on demand from each task’s release
API.

Figure 5 illustrates that the proposed method improves
a processor utilization of the Xeon Phi against the task
level scheduler. Figure 5(a) illustrates a processor utiliza-
tion of the Xeon Phi by the task level scheduler. Figure
5(b) illustrates a processor utilization of the Xeon Phi by

1 // host processor part
2 for (i=0;i<N;i++)
3 A[i] = ...;
4

5 AcquireProcessorResource();
6

7 // Xeon Phi part
8 #pragma offload target(mic)
9 {

10 #pragma omp parallel for
11 for (i=0;i<N;i++)
12 B[i] = A[i];
13 }
14

15 ReleaseProcessorResource();
16

17 // host processor part
18 for (i=0;i<N;i++)
19 ... = B[i];

Fig. 3. An example of an offloading program code which
cooperates with the dynamic offload scheduler.

the proposed method. In Figure 5(a), the task level sched-
uler allocates the processor resources to each task while
each task runs, so that there are idle processor resources.
In Figure 5(b), the proposed method allocates the proces-
sor resources to each task while each offload runs, so that
it is able to minimize the idle processor resources. The
proposed method increases the number of tasks which is
able to share the Xeon Phi. Thus, the proposed method
is able to improve the processor utilization of the Xeon
Phi against the task level scheduler.

IV. Evaluations

This section describes evaluation methodology and the
evaluation result.

A. Methodology

We create micro benchmarks that represent the offload
task and enable to focus the goal of evaluating perfor-
mance improvement by our proposed scheduler. The task
repeatedly executes a host part and an offload part. Ex-
ecution times of the host part and the offload part are
the same. There are no overlaps between two executions.
The host part just waits for offload executions with sleep()
call. We use two kernels, sGEMM and sGESV, from Intel
Math Kernel Library[8] for the offload part. Both ker-
nels conduct matrix operations. Matrix sizes of them are
4096x4096. The offload part runs on the Xeon Phi with
32 threads. Utilizing processor resources of the Xeon Phi
increases the performance. However, CPU overutilization
like thread oversubscription incurs performance down be-
cause it leads context switches and cache misses. Thus,
we measure the total performance of multiple tasks in or-
der to considering CPU overutilization. The performance
of each task is measured by FLOPS, where execution time

- 263 -

task dynamic offload scheduler

Acquire
Processor
Resource()

S1.search available processor
resources from the available

processor table

Available
Processor
Resource

Table

find
S2.update appropriate processors’

state busy in the available processor
resource table

S3.return available resources
with or without processor affinity

execute
offload part
on Xeon Phi

not find

Release
Processor
Resource()

S4.update appropriate processors’
state idle in the available processor

resource table

Fig. 4. A flowchart of the dynamic offload scheduler which
cooperates with a task.

includes both the host part and the offload part, and the
number of floating operations at the kernel, sGEMM and
sGESV. The performance of the system can be calculated
by summing the FLOPS of every running task.
We evaluate two conventional methods, “task level

scheduler” and “Linux scheduler”, and three proposed
methods, “proposed(none)”, “proposed(scatter)” and
“proposed(compact)”. Table I summarizes the difference
of these five methods.

• “task level scheduler” : This method assigns spatially
partitioned resources to tasks. This method divides
Xeon Phi’s 59 cores to seven 8-cores, and one 3-cores.
Therefore, we run eight tasks, where seven tasks run
with 32 threads and one with 12 threads.

• “Linux scheduler” : This method leaves threads
scheduling to Linux OS on the Xeon Phi. Since the
Linux OS can handle multitasking and has a threads
scheduling mechanism, it is possible to run many of-
floads without any scheduling middleware. We run
15 tasks, and each tasks run with 32 threads.

• “proposed(none)” : The dynamic offload scheduler
only manages the number of threads executed on the
Xeon Phi in order not to oversubscribe threads more
than the hardware threads. It still leaves the thread
scheduling to the Linux OS on the Xeon Phi. We run
15 tasks.

• “proposed(scatter)” : The dynamic offload scheduler
manages both the number of threads and the thread
scheduling. In addition to the “proposed(none)”, the
scheduler assigns appropriate hardware threads for
offload. The scheduler uses scatter affinity. Thus,
the scheduler avoids more than one thread run on
the same hardware thread. We run 15 tasks.

task1

task2

time

Xeon Phi’s
whole processor resource

occupied
by task1 occupied

by task2

task1

time

task3

task5

(a) the task level scheduler (b) the proposed method

task3

occupied
by task3

task4

occupied
by task4

task7

occupied
by each
offload

Xeon Phi’s
whole processor resource

task
running
interval

task2

task4

task6

task8

Fig. 5. A comparison between the task level scheduler and the
dynamic offload scheduler for a processor utilization of Xeon Phi.

• “proposed(compact)” : The dynamic offload sched-
uler manages both the number of threads and the
thread scheduling. Unlike “proposed(scatter)”, this
method uses compact affinity. We run 15 tasks.

Figure 6 illustrates how to allocate tasks on a proces-
sor by each method. In this example, the processor has
two cores, and each core supports two hardware threads.
Each task uses two threads. The “task level scheduler”
and “proposed (compact)” allocate hardware thread 0 and
hardware thread 1 to a task, and allocate hardware thread
2 and hardware thread 3 to the other. The compact affin-
ity sets thread 〈n〉 + 1 of a task to a free thread con-
text as close as possible to the thread context where the
〈n〉 thread of a task was placed. The “Linux scheduler”
and “proposed(none)” allocate all hardware threads to
all tasks without an affinity setting. Thus, Linux kernel
dynamically allocates each execution thread onto hard-
ware thread. The “proposed(scatter)” allocates hardware
thread 0 and hardware thread 2 to a task, and allocates
hardware thread 1 and hardware thread 3 to the other.
The scatter affinity distributes the threads of a task as
evenly as possible across the entire system.

B. Results

Figure 7 illustrates evaluation results. X-axis
shows sGEMM and sGESV. Y-axis shows a normal-
ized performance against that of “task level sched-
uler“. Bars show “task level scheduler”, “Linux sched-
uler”, “proposed(none)”, “proposed(scatter)” and “pro-
posed(compact)” from left to right.

In sGEMM and sGESV, our proposed method “pro-
posed(compact)” shows 1.54 and 1.62 times performance
improvements compared to the “task level scheduler”. It

- 264 -

TABLE I
Evaluated scheduling methods.

Resource assignments level Thread oversubscribe control Thread affinity # of tasks
task level scheduler Task level yes Compact 8
Linux scheduler Offload level no None 15
proposed (none) Offload level yes None 15
proposed (scatter) Offload level yes Scatter 15
proposed (compact) Offload level yes Compact 15

core0

Hardware
Thread 0
(HWT0)

Task0 Task1

task level scheduler HWT0, HWT1 HWT2, HWT3

Linux scheduler HWT0-3

proposed (none) HWT0-3

proposed (scatter) HWT0, HWT2 HWT1, HWT3

proposed (compact) HWT0, HWT1 HWT2, HWT3

Task0

Task1
How to assign ?

processor

HWT1

core1

HWT2 HWT3

Fig. 6. How to execute two tasks which use two threads on two
processor cores which support two hardware threads by each
method.

clearly shows that our proposed method improves the uti-
lization of the Xeon Phi’s resource.

On “Linux scheduler”, huge performance drops hap-
pens. Since it does not control the number of total
threads, it causes the thread oversubscription; the num-
ber of invoked threads exceeds the number of hardware
threads. Such oversubscription results in context switches
and cache conflicts, which are more expensive on the Xeon
Phi than Xeon. We can avoid this oversubscription by
“proposed(none)”, and it shows some performance im-
provement. From these results, it becomes clear that
avoiding the thread oversubscription is important on the
Xeon Phi.

There are performance gaps among “proposed(none)”,
“proposed(scatter)” and “proposed(compact)”. The dif-
ference among those three is thread affinity settings.
On “proposed(none)”, the dynamic offload scheduler
does not set thread affinity. The Linux OS on the
Xeon Phi allocates offload threads to the hardware
threads. On the other hand, the dynamic offload sched-
uler specifies the thread affinity on “proposed(scatter)”
and “proposed(compact)”. Since the performance of
“proposed(none)” is lower than those of other two, we
think reducing an overhead of OS scheduling by thread

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

sGEMM sGESV

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

task level scheduler Linux scheduler
proposed(none) proposed(scatter)
proposed(compact)

1.54X
1.62X

Fig. 7. Evaluation result using sGEMM and sGESV.

affinity is also important on the Xeon Phi.
Moreover, “proposed(compact)” shows better perfor-

mance than “proposed(scatter)”. When using scatter,
four threads from different tasks run on the same core,
and it causes the cache conflicts. On the other hand, four
threads from the same task run on the same core when
using compact, and it reduces such cache conflicts and
improves cache efficiency. Hence, we think it is impor-
tant to set thread affinity that fits to the multitasking
environments.
From the above discussions, we can conclude that

the dynamic offload scheduler with “proposed(compact)”
works better than the task level scheduler because the for-
mer can pack more offload processing from multiple tasks
to the Xeon Phi, and improve the performance. It also
works better than the scheduler of Linux OS on the Xeon
Phi because of following three reasons; 1) it prevents the
thread oversubscription, 2) reduces the overhead of OS
scheduling, and 3) set the suitable affinity for multitask-
ing.

V. Related Works

Multitasking on GPGPU has been studied [5, 9, 10,
11]. Peters and et.al [5] proposes a method to realize
sharing Tesla generations GPGPU among multiple tasks
by way of running one kernel included some functions on

- 265 -

GPGPU and transferring data for each function. Sun
and et.al [9] proposes a sharing GPGPU method by way
of merging different data from some same programs and
offloading process with merged some different data. Li
and et.al [10] proposes a sharing GPGPU method by way
of merging some kernels of multiple tasks with considering
I/O, computations and data transfer information. Ino and
et.al [11] proposes a cooperative multitasking method by
way of dividing offloading task into small pieces. These
studies realize sharing GPGPU with one kernel by way
of merging data or kernels, and share GPGPU by time-
sharing. Thus, these studies do not present to schedule
multiple offloads spatially.
Resource management in multiple tasks environment is

studied [12, 13]. Mok and et.al [12] proposes a scheduling
method by way of using two partitioning methods and
scheduling tasks into these partitions. Adriaens and et.al
[13] proposes a scheduling kernel on Streaming Processors
(SMs) of GPGPU by way of distributing SMs statically
and scheduling a kernel on distributed SM dynamically
with considering profile results of each application. These
studies targets to schedule tasks on statically distributed
resources, so that these are different from our dynamically
distributing and dynamically scheduling method.

VI. Conclusions

In this paper, we propose a dynamic offload scheduler
which assigns processor resources of the Xeon Phi to tasks
by an offload level. By preventing the thread oversub-
scription and settings the appropriate thread affinity, the
dynamic offload scheduler works better than the task level
scheduler because the former can pack more offload pro-
cessing from multiple tasks to the Xeon Phi, and improve
the performance. It also works better than the sched-
uler of Linux OS on the Xeon Phi because of following
three reasons; 1) it prevents threads oversubscription, 2)
reduces the overhead of OS scheduling, and 3) set the
suitable affinity for multitasking.

References

[1] Gang Chen, Guobo Li, Songwen Pei, and Baifeng Wu. High
performance computing via a gpu. In Information Science and
Engineering (ICISE), 2009 1st International Conference on,
pages 238 –241, dec. 2009.

[2] Mian Lu, Jiuxin Zhao, Qiong Luo, Bingqiang Wang, Shaohua
Fu, and Zhe Lin. Gsnp: A dna single-nucleotide polymorphism
detection system with gpu acceleration. In Parallel Processing
(ICPP), 2011 International Conference on, pages 592 –601,
sept. 2011.

[3] NVIDIA Corp. Kepler gk110 white paper.
http://www.nvidia.com/content/PDF/ kepler/NVIDIA-
Kepler-GK110- Architecture-Whitepaper.pdf.

[4] A. Heinecke, M. Klemm, and H. Bungartz. From gpgpu to
many-core: Nvidia fermi and intel many integrated core ar-
chitecture. Computing in Science Engineering, 14(2):78 –83,
march-april 2012.

[5] H. Peters, M. Koper, and N. Luttenberger. Efficiently using
a cuda-enabled gpu as shared resource. In Computer and In-
formation Technology (CIT), 2010 IEEE 10th International
Conference on, pages 1122–1127, 2010.

[6] Intel Corp. Intel many integrated core architecture.
http://www.intel.com/ content/ www/ us/ en/ architecture-
and- technology/ many- integrated- core/ intel- many-
integrated- core- architecture.html.

[7] Intel. The intel R©xeon phiTMproduct family.
http://www.intel.com/ content/ dam/ www/ public /us/
en/ documents/ product- briefs/ high- performance- xeon-
phi- coprocessor- brief.pdf.

[8] Intel R©math kernel library. http://software. intel. com/ en-us/
sites/ default/ files/ Intel Math Kernel Library v12 PB-
1.pdf.

[9] Siqi Sun, Zhuo Zhang, Liang Wang, Wenfeng Shen, Weimin
Xu, and Yanheng Zheng. A study of the single-program
multiple-task model on gpu computing. In Automatic Control
and Artificial Intelligence (ACAI 2012), International Con-
ference on, pages 296–300, 2012.

[10] Teng Li, V.K. Narayana, E. El-Araby, and T. El-Ghazawi. Gpu
resource sharing and virtualization on high performance com-
puting systems. In Parallel Processing (ICPP), 2011 Interna-
tional Conference on, pages 733–742, 2011.

[11] F. Ino, A. Ogita, K. Oita, and K. Hagihara. Cooperative mul-
titasking for gpu-accelerated grid systems. In Cluster, Cloud
and Grid Computing (CCGrid), 2010 10th IEEE/ACM Inter-
national Conference on, pages 774–779, 2010.

[12] A.K. Mok, Xiang Feng, and Deji Chen. Resource partition for
real-time systems. In Real-Time Technology and Applications
Symposium, 2001. Proceedings. Seventh IEEE, pages 75–84,
2001.

[13] J.T. Adriaens, K. Compton, Nam Sung Kim, and M.J. Schulte.
The case for gpgpu spatial multitasking. In High Performance
Computer Architecture (HPCA), 2012 IEEE 18th Interna-
tional Symposium on, pages 1 –12, feb. 2012.

- 266 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

