
Scaling up Size and Number of Expressions
in Random Testing of Arithmetic Optimization of C Compilers

Eriko Nagai 1 Atsushi Hashimoto 2 Nagisa Ishiura 2

1 Solution Business Group, Business Solution Unit, Fujitsu Systems West Ltd., Chuo-ku, Osaka, Japan
2 School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan

Abstract—This paper presents an enhanced method

of testing validity of arithmetic optimization of C com-

pilers using randomly generated programs. Its bug de-

tection capability is improved over an existing method

by 1) generating longer arithmetic expressions and 2)

accommodating multiple expressions in test programs.

Undefined behavior in long expressions is successfully

avoided by modifying problematic subexpressions dur-

ing computation of expected values for the expres-

sions. An efficient method for minimizing error in-

ducing test programs is also presented, which utilizes

binary search. Experimental results show that a ran-

dom test system based on our method has higher bug

detection capability than existing methods; it has de-

tected more bugs than previous method in earlier ver-

sions of GCCs and has revealed new bugs in the latest

versions of GCCs and LLVMs.

I. Introduction

Compilers are infrastructure tools for software develop-
ment, which must be highly reliable. It is an exacting task
to develop compilers of production qualities for newly de-
veloped processors. Even for well developed compilers,
greatest care must be paid to keep their credibility, for
various new optimization techniques are continuingly im-
plemented into them.
Correctness of compilers are tested by compiler test

suites, large sets of test programs which are compiled by
the compilers and resulting codes are executed to see if
they behave as expected. Well-known test suits are Plum
Hall [1], SuperTest [2], GCC (GNU Compiler Collection)
test suite [3], and testgen2 test suite [4].
Through repeated test suite runs and subsequent bug

fixes, compilers are forged to be almost perfect. How-
ever, it is theoretically impossible to completely validate
a compiler with a finite set of test programs. Actually
many bugs are reported for well-used compilers such as
GCC 1 and LLVM 2.
Random testing is a complement to the testing by those

test suites, which attempts to detect compiler malfunc-
tions by huge volumes of randomly generated programs.

1http://gcc.gnu.org/bugzilla/
2http://www.llvm.org/bugs/

Several random testing systems have demonstrated their
bug-finding performance. Quest [5] found bugs in calling
conventions (passing of arguments and return values) of
C compilers. Randprog [6] detected miscompile regarding
C volatile variables. Csmith [7] achieved comprehensive
testing of C compilers, covering broad range of syntax in
C programs, including arrays, struts/unions, conditional
and loop statements, function calls, etc.

Csmith is actually one of the most successful compiler
test system, which reported 79 bugs in GCCs and 202
bugs in LLVMs over three years and made great contri-
bution to improve the reliability of those open source com-
pilers. Csmith is based on a differential testing method,
in which errors are detected by compiling test programs
by different compilers (or different versions or different
options of the same compiler) and by comparing the re-
sults. This method eliminates the necessity of computing
expected behavior of randomly generated programs. On
the other hand, some restrictions must be posed on test
programs so that they do not exhibit undefined behavior,
which leads to some weakness in bug detection abilities.
It is also a challenge to minimize error programs for bug
localization.

In contrast, the random testing method in [9] precom-
putes the precise expected behavior for randomly gener-
ated programs to decide the validity of compilers under
test. This makes it much easier to exclude programs with
undefined behavior, for pieces of program codes that cause
undefined behavior are detected during program construc-
tion. Moreover, minimization of error detecting programs
becomes easier.

The random testing system based on this method found
bugs in GCC 4.2.1 (apple-darwin10), GCC 4.3.4 (i686-
pc-cygwin), GCC 4.4.1 (i686-pc-linux), etc. However, it
was not so effective to the newer versions of the GCC; no
bugs were detected in GCCs of versions higher than 4.5.0.
Possible reasons for this is that the generated programs
are all small. Each program contains only one arithmetic
expression. Moreover, the expression tend to be short in
order to avoid undefined behavior.

This paper proposes methods of substantially enhanc-
ing the bug detection capability of the random test sys-
tem based on [9]. Much longer expressions are generated
while avoiding undefined behavior. This is achieved by

SASIMI 2013 ProceedingsR2-3

- 88 -

while (time allows) {
randomly generate a test program t;
compile & execute t;
if (error) { save t; }

}
analyze saved test programs;

Fig. 1: Overall flow of compiler random testing.

modifying invalid subexpressions as their expected values
are computed. Test programs are also fortified by ac-
commodating multiple expressions. Besides the program
generation methods, this paper also presents an improved
procedure for efficiently minimize large error programs.
An implemented random test system successfully de-

tected bugs in GCCs of versions higher than 4.5.3. For
those versions of GCC, our method found more bugs than
Csmith in 12 hours. We have so far reported eight bugs
to GCC (4.7.2 through 4.9.0 experimental) and five bugs
to LLVM (3.4 under development) which were uncovered
by our test system.

II. Random testing of compilers targeting
arithmetic optimization

A. Random testing of compilers

The overall flow of compiler random testing is very sim-
ple. As shown in Fig. 1, random program generation,
compile and execution, and error checking are repeated
as long as time allows. If errors are detected, the pro-
grams caused the errors are saved. The analysis of the
error program involves minimization (or reduction) of the
programs, in which the simplest programs that still trig-
ger the same errors are sought, automatically or manually,
to make bug localization easier.
A major challenge in compiler random testing is how to

avoid generating test programs with undefined behavior.
The undefined behavior includes dividing by zero, deref-
erencing a null pointer, overflowing a signed integer etc.,
for which the standard imposes no requirements. A test
program with any undefined behavior is of no use since
any execution results are valid for such a program.
Fig. 2 shows an example program with undefined be-

havior. Comparison c > t0 in the right operand of the
division in line 10 evaluates to zero, since c==30 and
t0==670. The shift operation in the same line also causes
undefined behavior because the right operand (t1==40)
exceeds the width of the left operand. These kinds of
undefined behavior occur easily in randomly generated
programs.
Since undefined behavior depends on run-time values

of variables, it is theoretically impossible to detect the
invalid behavior precisely without computing expected
behavior of test programs. So, Csmith avoids gener-
ating programs with undefined behavior in a conserva-
tive way. For example, it guards divide operations as
“(b!=0)?a/b:a” instead of “a/b.” However, since every
arithmetic operation is always guarded, some optimizers

1: int main (void)
2: {
3: int a = 60;
4: int b = 10;
5: int c = 30;
6: int d = 7;
7:
8: int t0 = b * (a + d); /* t0 = 670 */
9: int t1 = b * d - c; /* t1 = 40 */

10: int t2 = (a << t1) / (c > t0);
11:
12: return 0;
13: }

Fig. 2: Program with undefined behavior.

1: #include <stdio.h>
2:
3: const volatile unsigned char x1 = 2U;
4: const volatile long long x6 = 1476669LL;
5: static const unsigned short x8 = 35U;
6:
7: int main (void)
8: {
9: int rc = 0;

10: long long test = 0;
11:
12: test = (((x8*(x6<<x8))>=x1)/x6);
13:
14: if (test == 0LL) {
15: printf("OK, %lld\n",test);
16: }
17: else {
18: rc = 1;
19: printf("NG, %lld\n",test);
20: }
21: return rc;
22: }

Fig. 3: Test program generated by the method in [9].

will never be invoked and hence will not be tested. This
may limit the bug detection abilities of the test programs.

B. Random testing of arithmetic optimization

Nagai et al. [9] proposed a compiler random testing
method targeting code optimization for arithmetic expres-
sions, which precomputes the expected behavior of test
programs to provide “correct answers.” The precompu-
tation is also useful for avoiding undefined behavior; test
programs can be altered on detecting undefined behavior.
Furthermore, it makes automatic minimization of error
programs easier.
Fig. 3 shows an example of test programs generated

by this method. Lines 3–10 declare and initialize vari-
ables, line 12 gives an arithmetic expression, and line 14
compares the result with the expected value. For each
variable, its type, its scope (local or global), its modi-
fier (const, volatile, const volatile, or nothing), its
class specifier (static or nothing), and its initial value
are selected randomly.
Undefined behavior is worked around in the following

way:

1) Generate a random expression.

2) Initialize variables by random values.

3) Compute expected value of the expression.

4) If there is no undefined behavior, then return with
the expression and the initial values.

5) If repetition count is less than 100, then goto 2); oth-

- 89 -

��

���

�

�

�

������ ������
�

������

��

���

�� �������

�

���
���

���

���

��

�������	�
������

���

�

�

������ ������

�

������

�

��

���

�� �������

���

������

(a) Zero division.

�

��

�

���
�	��

�	��

���	
���

���	
��	�	��
���������

�
�����	
���

������

��� ���

��� ���

(b) Overflow.

Fig. 4: Avoiding undefined behavior.

erwise discard the expression and start over from 1).

Since longer expressions induce undefined behavior
more probably, they have less chances to survive. 10,000
times of random program generation results in average
and maximum expression size of 4.0 and 50, respectively.
Moreover, each test program contains only one expression,
which may limit its bug detection ability.

III. Scaling up Size and Number of Expressions

We enhance the bug detection ability of random testing
method in [9] by scaling up the size and the number of
the expressions generated in test programs.

A. Generation of longer expressions

Instead of regenerating variables’ initial values or ex-
pressions to avoid undefined behavior, we modify gener-
ated expressions to eliminate the undefined behavior. Ev-
ery time we detect undefined behavior during computing
the expected values of a randomly generated expression,
we insert a new operator to eliminate the undefined be-
havior.

(1) Avoiding zero division

If the right operand of division or modulo turns out
to be zero, extra addition is inserted to make the
operand non-zero. For example, in Fig. 4 (a), the ex-
pression yields undefined behavior due to zero divi-
sion. In this case, addition is inserted into the right
operand of the division so that it will be non-zero.
The non-zero value for the new variable x5 is chosen
randomly.

(2) Avoiding signed overflow and invalid shift amount

If signed overflow is detected, it is eliminated by
adding an arbitrary value to either of the operands.
In Fig. 4, for example, overflow (assume x1 and x2

are both signed integers) is avoided by adding a neg-
ative value to one of the operands. Invalid shift

TABLE I: Undefined behavior in integer arithmetic.

operator condition
/ right operand is 0
% right operand is 0

right operand is negative
<< right operand is larger than left operand width

left operand is signed type and negative

>>
right operand is negative
right operand is larger than left operand width

+, -, , /, overflow on signed operation

1: #include <stdio.h>
2: #define OK() printf("@OK@")
3: #define NG() printf("@NG@")
4:
5: static signed int x5 = 10;
6: const volatile signed long x6 = 8L;
7: static signed int x8 = 2;
8: signed int t1= 820;
9:
10: int main (void)
11: {
12: signed long x1 = 100L;
13: signed int x3 = 32;
14: signed long t0 = 70L;
15: signed long t2 = 9;
16:
17: t0 = (((x8 * (x6 << x8)) >= x1) / x6;
18: t1 = ((t0 + x3) * (x5 << x8));
19: t2 = ((x1 + t0) - t1) * x6;
20:
21: if (t0 == 0L) { OK(); } else{ NO(); }
22: if (t1 == 1280) { OK(); } else{ NO(); }
23: if (t2 == -9440L) { OK(); } else{ NO(); }
24:
25: return 0;
26: }

Fig. 5: Test program with multiple expressions.

amounts (less than 0 or more than the width of the
left operands) are corrected in the same way.

There are eight kinds of undefined behavior in integer
arithmetic operations in C, as summarized in Table I. For
all those cases, undefined behavior can be eliminated in
the same way.

Expressions with desired size and depth are generated
by a procedure ”make expression(n,d)” which generates
an expression whose size and depth do not exceed n and
d, respectively, and returns its root node. If n = 0 or
d = 0, it returns a randomly chosen variable node. Oth-
erwise, 1) it randomly chooses an operator o, 2) randomly
generate positive integers n1 and n2 where n1 + n2 =
n−1, 3) generate two subexpressions e1 and e2 by calling
make expression(n1,d−1) and make expression(n2,d−1),
respectively, and 4) returns an operand node with oper-
ator o and operands e1 and e2. We assume the size of
expressions to be 1 to 10000.

B. Generating programs with multiple expressions

We also try to enhance bug detection ability by putting
multiple expressions into a single test program. Fig. 5
shows an example of the proposed form of test programs.
Multiple expressions are generated as in lines 17–19. The
computed values are compared with the expected values
in lines 21–23. We assume a program to contain 1 to
10000 expressions.

- 90 -

t1 = ((x8 * x0) + x2) << x4; /* t1==256 */
t2 = x3 < (x5 * (x4 % x1));
· · ·

⇓
t1 = 256;
t2 = x3 < (x5 * (x4 % x1)):
· · ·

Fig. 6: Replacing expression by expected value.

int x1 = 5; int x2 = 7;
int t = (x1 + x2) / x1;
if (t == 2) { OK(); }
else { NG(); }

⇓
int x1 = 5; int x2 = 7;
int t = (x1 + x2);
if (t == 12) { OK(); }
else { NG(); }

Fig. 7: Top-down minimization.

IV. Minimization of error programs

Minimization of error programs is indispensable in an-
alyzing the causes of the errors. Suppose we are given a
error program of thousands of lines. Far from locating the
bugs in the compiler, it is hard even to tell if the compiler
is wrong or the test program is wrong; the expected val-
ues may be erroneous or there may be undefined behavior
somewhere in the test program. In practice, a program
to generator valid random test programs cannot be devel-
oped without an automatic error program minimizer.
This paper proposes an error program minimization

method which can efficiently handle programs with many
long expressions. It is an extension of the method in [9] in
four ways: 1) a transformation to handle multiple expres-
sions is added, 2) binary search is introduced to reduce
time necessary for minimizing large scale error programs,
3) a transformation to simplify values and types in error
programs is added, and 4) an overall flow to control the
minimization phases is redesigned.
Our minimization method is based on delta debugging

[11]. If a certain transformation reducing the size of an
error program preserves the occurrence of the error, the
transformation is adopted, otherwise another transforma-
tion is tried. By repeating this until any of the possible
transformations eliminates the error, a minimal program
is obtained. Note that our method does not guarantee
that the results are minimum. The results depends on
the order of transformations applied, so it cannot be fur-
ther reduced by any of the transformations but a smaller
error program may be obtained by a different sequence of
transformations.
Our method is based on the the following four trans-

formations on error programs, where (2) and (3) are from
[9] and (1) and (4) are newly introduced in this paper.

(1) Expression elimination

Some of the expressions are replaced by their ex-
pected values, as illustrated in Fig. 6.

(2) Top-down minimization:

int x1 = 2; int x2 = 3;
int t = (x1 + x2) * x1;
if (t == 10) { OK(); }
else { NG(); }

⇓
int x1 = 2; int x2 = 3;
int t = (2 + x2) * x1;
if (t == 10) { OK(); }
else { NG(); }

(a) Substitution

unsigned int x3 = 1;
unsigned int t = (-3 + 2) * x3;
if (t == 4294967295U) { OK(); }
else { NG(); }

⇓
unsigned int x3 = 1;
unsigned int t = -1 * x3;
if (t == 4294967295U) { OK(); }
else { NG(); }

(b) Evaluating expression

Fig. 8: Bottom-up Minimization

long long x1 = 422337203685477580;
int x2 = 100;
int t = x1 + x2 << (x1 > 0);
if (t == 422337203685477680) { OK(); }
else { NG(); }

⇓
long long x1 = 192056;
int x2 = 100;
int t = x1 + x2 << (x1 > 0);
if (t == 192156) { OK(); }
else { NG(); }

(a) Value minimization

long long x1 = 1;

⇓
long x1 = 1;

volatile int x2 = 4;

⇓
int x2 = 4;

(b) Type minimization

Fig. 9: Minimization of types and values

An expression is replaced by either of the two
operands of the root operator, as shown in Fig. 7.

(3) Bottom-up minimization:

A variable reference is replaced by its value, or an
operation is replaced by its resulting value, as shown
in Fig. 8 (a) and (b), respectively.

(4) Value and type minimization:

The absolute values of constants are made smaller, as
in Fig. 9 (a). Types are also made simpler; modifiers
and class specifiers are removed, globals are made
locals, and shorter types (short and char) and longer
types (long and long long) are reduced to standard
types (int), as shown in Fig. 9 (b).

The bottom-up minimization method in [9] basically re-
duces the operators in an expression one by one, so it took
10000 times of compilation if an expression with 10000 op-
erators was reduced to a constant. In order to avoid this,
we introduce binary search. First, one of the operands

- 91 -

���

���

���

�������

�������������������

�����������������������
����������� ��������������!"��������

� ���������

	�"#�����
������$�����

�%��#�"�
������$�����

�� ���������"��
������$�����

�����������������������
����������� �������������

�������������

������������� ������ ���

���������� ���

Fig. 10: Overall flow of minimization.

of the root operator of a given expression is reduced to a
constant. If it succeeds (the resulting program still pro-
duces an error), the other operand is tried. If it fails, the
children of the operand are recursively attempted to be
reduced.
Similarly, the expression elimination is done in binary

way, unless reduction of 10000 expressions would needs
10000 compile runs. At first, the first half of the expres-
sions are reduced to constants. If it succeeds, the second
half are tried. Otherwise, the quarters, the eighth, ... are
tried in a recursive way.
Note that the effects of the four reduction strategies

are not independent. For example, even if the bottom-up
minimization becomes no more applicable, it often turns
effective after some other minimization steps. Based on
this observation, we construct the overall minimization
flow as shown in Fig. 10. (2) and (3) are repeated after (1),
because (2) alone has little effect on (1). If the expression
under test is reduced by (4), the whole process is repeated
until no gain is obtained. Note that binary search is done
in (1) and (3) only for the first time. This is because only
a little reduction is observed after the first iteration, for
which the binary search is less efficient than linear search.

V. Implementation and experimental results

A. Implementation

Random test systems based on the proposed method
and the previous method in [9] have been implemented in
Perl (version 5.10), which run on Windows Cygwin, Mac
OSX, Ubuntu Linux, etc.

B. Experimental results

Eight versions of GCCs were tested by the both meth-
ods. Compiler options examined were -O0 and -O3. Ta-
ble II summarizes the result. Column “CPU” refers to
the machines on which the tests were run. “Size” lists
the products of the sizes and the numbers of the expres-
sions in a test program. “Time” and “#test” shows total
execution times and the number of tests generated, re-
spectively. “#err” indicates the number of the programs
that resulted in errors and “#pat” the number of different

patterns of the error programs. For the GCCs of the first
two rows, the proposed method found more or the same
number of error patterns within much smaller execution
time. The new method succeeded in finding bugs in the
latter five (newer) versions of GCCs, in which the previ-
ous method detected no errors. GCC 4.7.2 is the latest
version at the point of this experiment and at least one
of the three errors are due to a bug which had never been
discovered.
Comparison with our random testing system and

Csmith [7] was also performed on three versions of GCCs.
Table III shows the result. Tests are run for 12 hours for
three options, none, -O0, and -O3. The proposed method
detected much more bugs than Csmith. The compari-
son in terms of the numbers may not be fair, for Csmith
had detected many bugs in the earlier versions of GCCs
which had been fixed. However, we can at least say that
the proposed method can find bugs which Csmith does
not detect.
Fig. 11 shows examples of error programs that detected

bugs in the latest versions of GCCs and LLVM. (a) is one
of the three error programs for GCC 4.7.2 in Table II.
The program was further hand minimized after the auto-
matic reduction. It turned out that this program caused
the same error on the GCCs of versions from at least 3.1.0
through 4.7.2, regardless of targets and optimization op-
tions. This type of bugs are difficult to find by such a
method as Csmith that rely on the differential testing
method. The error program (b) detected “internal com-
piler error” in GCC 4.8.0 for x86 64 and i686 with -O2

option (more precisely, with options -O1 -ftree-vrp).
The LLVM SVN as of May 10, 2013 (version 3.3 under
development) miscompiled the program in (c). The com-
piled code printed “NG (t==1)”.
We are continuingly running our random test system

on the very latest versions of GCC and LLVM. Since
February 2013, we have so far reported eight bugs in
GCC (4.7.2 through 4.9.0 experimental) 3 and five bugs
in LLVM (SVN) 4.

VI. Conclusion

An enhanced method of testing validity of arithmetic
optimization of C compilers using random programs has
been presented in this paper. The compiler testing system
is able to detect bugs which cannot be found by the ex-
isting methods, and has revealed several bugs in the very
latest versions of GCCs and LLVMs.
Compiler random testing based on precomputation of

programs’ expected behavior seems to have great poten-
tial to uncover bugs which are difficult by the differential
testing. However, our random program generator cur-
rently covers only small portion of the C language as

3http://gcc.gnu.org/bugzilla/; bugs 56250, 56899, 56984, 57083,
57131, 57656, 57829, 58088

4http://llvm.org/bugs/; bugs 15607, 15940, 15941, 15959, 16108

- 92 -

TABLE II: Experimental results (comparison with the previous method)

compiler (target) CPU size
previous method [9] proposed method

time [h] #test #err (#pat) time [h] #test #err (#pat)
LLVM-GCC 4.2.1 (apple-darwin10) A 10,000 106.8 200,000 4 (3) 12.0 3,383 33 (13)
GCC 4.2.1 (apple-darwin10) A 10,000 105.5 200,000 4 (3) 12.0 2,772 3 (3)
GCC 4.4.1 (m32r-elf) B 1,000 6.0 47,836 68 (4) 6.0 5,038 428 (4)
GCC 4.4.1 (arm-elf) B 5,000 12.0 24,632 0 (0) 12.0 1,718 20 (8)
GCC 4.4.4 (i686-pc-linux) B 3,000 12.0 38,981 0 (0) 12.0 4,505 21 (18)
GCC 4.5.3 (i686-pc-cygwin) B 3,000 12.0 26,047 0 (0) 12.0 4,296 30 (29)
GCC 4.5.4 (i686-pc-linux) B 5,000 12.0 23,674 0 (0) 12.0 1,977 26 (26)
GCC 4.7.2 (x86 64-apple-darwin10) A 1,000 144.0 713,851 0 (0) 68.1 50,000 3 (3)

Tested options: -O0, -O3 CPU: A Core 2 Duo 2.12GHz
B Core i5-2540M 2.60GHz

TABLE III: Experimental results (comparison with Csmith [7])

compiler (target) time [h]
Csmith [7] proposed method

#test #err (#pat) #test #err (#pat)
GCC 4.4.4 (i686-pc-linux) 12.0 9,291 1 (1) 4,179 21 (18)
GCC 4.5.3 (i686-pc-cygwin) 12.0 10,643 0 (0) 4,172 29 (28)
GCC 4.5.4 (i686-pc-linux) 12.0 12,389 1 (1) 2,236 30 (30)

Tested options: NULL, -O0, -O3 CPU Core i5-2540M 2.60GHz

compared with Csmith. We are now trying to extend
our method to handle pointers, arrays, structs/unions, as
well as loop and conditional statements.

Acknowledgements

Authors would like to thank Mr. Masatoshi Nakahashi
and all the members of Ishiura Lab. of Kwansei Gakuin
University for their discussion and advices on this re-
search.

References

[1] http://www.plumhall.com/stec.html.

[2] http://www.ace.nl/compiler/supertest.html.

[3] http://gcc.gnu.org/install/test.html.

[4] http://ist.ksc.kwansei.ac.jp/˜ishiura/pub/testgen2/.

[5] C. Lindig: “Find a compiler bug in 5 minutes,” in Proc.
ACM International Symposium on Automated Analysis-
Driven Debugging, pp. 3–12 (Sept. 2005).

[6] E. Eide and J. Regehr: “Volatiles are miscompiled, and
what to do about it,” in Proc. ACM International Confer-
ence on Embedded Software, pp. 255–264 (Oct. 2008).

[7] X. Yang, Y. Chen, E. Eide, and J. Regehr: “Finding and
understanding bugs in C compilers,” in Proc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pp. 283–294 (June 2011).

[8] W. M. McKeeman: “Differential testing for software,” Dig-
ital Technical Journal, vol. 10, no. 1, pp. 100–107 (Dec.
1998).

[9] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda: “Random
testing of C compilers targeting arithmetic optimization ,”
in Proc. SASIMI 2012, pp. 48–53 (Mar. 2012).

[10] International Organization for Standardization: ISO/IEC
9899:TC2: Programming Languages-C (May 2005).

[11] Andreas Zeller and Ralf Hildebrandt: “Simplifying and
isolating failure-inducing input,” IEEE Trans. on Software
Engineering, vol. 28, no. 2, pp. 183–200 (Feb. 2002).

1: #include <stdio.h>
2:
3: int main (void)
4: {
5: unsigned x = 2U;
6: unsigned t = ((unsigned) -(x/2)) / 2;
7: if (t != 2147483647) {
8: printf("NG (t==%u)\n", t);
9: }
10: return 0;
11: }

(a) GCC 4.7.2 (for almost all the targets) miscompiled this program

(compiled code printed “NG (t==0)”.

1: int g = 0;
2: int main(void)
3: {
4: if ((g>>31) < -1) { g++; }
5: return 0;
6: }

(b) GCC 4.8.0 for Linux (x86 64 and i686) and Mac OS X (x86 64))

with ”-O1 -ftree-vrp” option crashed (internal compiler error).

1: #include <stdio.h>
2:
3: int main (void)
4: {
5: volatile short x = 1;
6: static long k = 1L;
7: int a = x << (k - 1); // a = 1
8: long t = 1L >> a ; // t = 0
9: if (t != 0L) { printf("NG (t==%ld)\n", t); }
10: return 0;
11: }

(c) LLVM (SVN as of May 10, 2013) for Linux (x86 64) with -O1 op-

tion miscompiled this program (compiled code printed “NG (t==1)”.

Fig. 11: Examples of error programs.

- 93 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

