
A Redundant Task Allocation Method for Reliable Network-on-Chips

Hiroshi Saito Tomohiro Yoneda Yuichi Nakamura
University of Aizu, Japan National Institute of Informatics, Japan NEC, Japan

hiroshis@u-aizu.ac.jp yoneda@nii.ac.jp yuichi@az.jp.nec.com

Abstract— The possibility of failures on network-

on-chip (NoC) will be increased if the size increases.

To realize reliable NoCs, we propose a redundant task

allocation method which allocates several copies of

tasks to different cores based on multiple task schedul-

ing. In the experiments, we apply the proposed

method to a real application. Then, the allocation

time of the proposed method and the estimated exe-

cution time of the application are evaluated changing

parameters such as multiplicities of scheduling and al-

location.

I. Introduction

Current System-on-a-Chip (SoC) has many processing
cores to execute applications in parallel with a shared bus
architecture such as AMBA [1]. However, as the wire
delay and the arbitration time of the shared bus become
long if more and more processing cores are connected,
scalability for the number of processing cores is restricted
on shared bus based SoCs.
Network-on-chip (NoC) [2, 3] organizes a network on a

chip and connects processing cores through the network.
As wires are divided by routers, their length and load
become short and small. In addition, as each process-
ing core communicates in parallel through the network
by representing data as packets, high performance can be
achieved even though more and more processing cores are
connected.
It is important to develop a reliable NoC which can

operate correctly even if some cores are failed. This is
particularly important if the number of processing cores
is increased, because the mean time-to-failure (MTTF)
of the target NoC will be decreased due to the increase
of failures caused by faults (e.g., stuck-at faults or delay
faults).
In this paper, we propose a redundant task allocation

method to realize a reliable NoC. For the task graph of
an application and the target NoC model, The proposed
method allocates copies of tasks to different cores based
on multiple task scheduling for failure patterns of NoC
cores. If scheduling for a failure pattern is valid under
a time constraint, the proposed method generates new
failure patterns until given upper bound for the number
of failed cores.
This paper is organized as follows. In section II, related

work is discussed. In section III, a task graph that repre-
sents an application is described. In section IV, a reliable
NoC considered in this study is presented. In section V,
the proposed method is described. In section VI, the ex-
perimental results are presented. Finally, in section VII,
conclusions are described.

II. Related Work

The following four methods realize task allocation by
considering failures of NoC cores. [4] dynamically reallo-
cates tasks to the surviving cores so that the difference
of communication times before/after a failure of a core
is minimized. [5] allocates tasks using integer linear pro-
gramming (ILP) to minimize both communication and
computation times. When a core is failed, this method
also dynamically reallocates tasks to the surviving cores
based on heuristics. [6] performs task scheduling and allo-
cation to maximize throughput for all considerable failure
patterns in advance. When a failure of a core is identi-
fied, this method dynamically reallocates tasks using the
calculated scheduling and allocation results. The limita-
tion of these methods is the time overhead to recalculate
task allocation ([4] and [5]) and to reallocate tasks (all
three methods) during the run-time of a given applica-
tion. For an application that requires real-time execution,
this limitation will be a critical problem. [7] used ILP for
redundant task allocation under multiplicity of tasks to
minimize the latency of a given application. However,
due to the characteristics of ILP, this method cannot deal
with large applications. Moreover, all of these methods
also do not consider multiple task scheduling described in
this paper is not concerned.
Meyer, et al. [8] proposed a task scheduling and allo-

cation method for safety-critical systems. Critical tasks
are executed by dual modular redundancy (DMR) while
non-critical ones are executed singly. In this method, crit-
ical tasks have higher priority for scheduling and alloca-
tion than non-critical ones. Therefore, non-critical tasks
are scheduled and allocated using the released resources
when critical tasks are not being executed. However, this
method does not concern failures of cores during task
scheduling and allocation.
Different from these methods, the proposed method al-

locates copies of tasks to different cores based on multiple
task scheduling during design phase. As tasks are already

SASIMI 2015 ProceedingsR3-15

- 287 -

allocated for cores before run-time, the proposed method
does not require reallocation of tasks during run-time even
if some cores are failed. This may reduce the time over-
head when some cores are failed. Moreover, by varying
multiplicities of scheduling and allocation, the different
level of reliability for the target NoC (i.e., how many
failed cores are tolerated) can be achieved by the pro-
posed method.

III. Task Graph

The proposed method uses a task graph to represent
a given application. The task graph is represented by
G〈T,E, period, ms〉.
T represents a set of tasks. A task ti is represented

by 〈io,ma, cmp,ET 〉 (1 ≤ i ≤ |T |). io = true means
that the task ti is an I/O task. Otherwise, the task ti
is a process task. An I/O task receives and sends data
through an I/O port. On the other hand, a process task
executes operations. ma (1 ≤ ma) represents the multi-
plicity of allocation (i.e., the number of copies for task ti).
cmp = true means that comparison of copies of task ti is
considered during multiple task scheduling. According to
the requirement for tasks, designers can assign cmp for
each task. Note that cmp becomes valid when ms is 2 or
3. Also note that the proposed method does not concern
comparison of I/O tasks. ET represents types of NoC
cores that can execute task ti. A type of ET is repre-
sented by et 〈type, delay, code〉. type is a type of cores
such as processor or accelerator, delay is the delay to Ex-
ecute task ti using the core represented by type. code
represents the code size of task ti when it is executed by
the core represented by type. Note that code of I/O tasks
is null. It implies that an I/O task occupies an I/O port.

E represents a set of edges. An edge ek〈ti, tj , s〉 (1 ≤
k ≤ |E|) represents data dependency from task ti to task
tj . s represents the size of the data transfer from task ti
to task tj .

period is the period of a given application. This study
assumes an application with periodic tasks. period is ac-
tually used as the time constraint during multiple task
scheduling. ms represents the multiplicity of scheduling.
1, 2, or 3 can be assigned to ms that represents single,
DMR, or TMR of tasks. Note that multiplicity of schedul-
ing (i.e., ms) can be set for task graph while multiplicity
of allocation (i.e., ma) can be set for each task. Also note
that copies of a task graph based on ms imply copies of
process tasks only.

Fig.1 shows a task graph G. The period of G is 1, 000
(cycles) and ms of G is 2. Tasks with circles are I/O tasks
while tasks with rectangles are process tasks. The label
of each edge represents the size s of the data transfer.

Fig. 1. Task graph

Fig. 2. Target NoC model

IV. Target NoC Model

NoC consists of cores, network interfaces (NIs), and
routers (Rs), as shown in Fig.2. The proposed method
requires the target NoC model that consists of cores and
some information to estimate the communication cost.
Currently, the proposed method assumes that the tar-
get NoC is mesh topology and does not have a shared
memory.

A. Representation of the Target NoC Model

NoC model used in the proposed method consists of
a set N of cores cu (1 ≤ u ≤ |N |) and the number of
expected failed cores fnum. A core cu is represented
by 〈type,mem, port, x, y, COMM〉. Here, type represents
the type of core cu such as processor, accelerator, or con-
troller for managing failures. This study assumes that
the target NoC model has at least one control core. The
internal memory size for core cu is represented by mem
while the number of I/O ports for core cu is represented
by port. x and y represent the x and y coordinates of core
cu in the NoC model. COMM represents a set of possible
communications from core cu to other cores. A commu-
nication comm in COMM is represented by 〈cv, delay〉.
delay means the delay to reach the header flit from core
cu to core cv. Currently, the proposed method assumes a
wormhole flow control [9].
In addition to the information for cores, the proposed

method requires the following information for the target
NoC model to estimate the communication cost: the bit-
width cb of channels and the required delay rdelay. rdelay
represents the delay for each flit to reach the destination
core after the header flit. The number of flits for a data

- 288 -

transfer is defined by �s/cb� (s is the size of the data trans-
fer between tasks annotated to the corresponding edge).
For example, if all channels in the target NoC is 32 bit
and 128 bit data is transferred from core cu to core cv,
the communication time is delay+rdelay∗(�128/32�−1).
This means that the first flit takes delay to reach core nv

while each of the rest of flits (i.e., 3 flits) takes rdelay.

B. Control Core

This study assumes that a control core in the target
NoC manage the execution of a given application like a
scheduler. The control core compares the results of tasks
if cmp of tasks ti is true. If ms is 2, the control core just
identifies the existence of a failure. On the other hand, if
ms is 3, the control core identifies the failed core by vot-
ing the results of tasks. It is possible to introduce more
control cores with the synchronization of other cores to
share the information for failures. However, as the main
concern in this paper is task allocation, the implemen-
tation of the control core will be discussed in our future
work.

C. Failure Patterns

This study assumes failures of cores except the control
core in the target NoC. We regard the failure of a core if
there is no path from the core to the control core even if
the core itself does not have a fault. In addition, we do
not concern the detail of faults (e.g., the number of faults,
the cause of faults, the place of faults, etc).
A failure pattern pl (1 ≤ l ≤ |P |) represents the set of

failed cores. The failure pattern also gives us the informa-
tion which cores are available. For example, p1 = {∅} and
p2 = {c2} in Fig.2 represent the failure pattern without
failed cores and the failure pattern where c2 is failed.

V. Redundant Task Allocation Method based

on Multiple Task Scheduling

In this section, we describe the proposed method. The
inputs of the proposed method are the task graph of an
application and the target NoC model. The proposed
method is used to map the application to the target NoC
in the design phase. In the following sub-sections, we de-
scribe the ideas of redundant task allocation and multiple
task scheduling at first and the algorithm of the proposed
method at next.

A. Redundant Task Allocation and Multiple Task
Scheduling

Redundant task allocation based on multiplicity of
tasks allows NoC to be operated correctly even if some
cores are failed. Fig.3 shows that this claim is correct,
where two copies for each process task are allocated to
different cores. Fig.3(a) shows a schedule where no core

Fig. 3. Effect of redundant task allocation

is failed (i.e., failure pattern p1). On the other hand,
assume that core c2 is failed during run-time because of
a fault. The right bottom figure represents a schedule
when this core is failed (i.e., failure pattern p2). As two
copies of process tasks are allocated to different cores,
failure pattern p2 is also executable. In the proposed
method, redundant task allocation is decided by multi-
ple task scheduling.
Multiple task scheduling based on multiplicity of

scheduling schedules two or three copies of process tasks
using different cores including comparison of process tasks
under a time constraint (i.e., period). The objective of
multiple task scheduling is minimization of the execution
time. Fig. 4 shows a multiple task schedule when the
multiplicity of scheduling is 2 (i.e., two copies of process
tasks are scheduled using different cores). The task graph
in this figure is obtained by copying the task graph in
Fig.1 based on multiplicity of scheduling with insertion of
comparison tasks for all process tasks (i.e., cmp of these
tasks are ”true”). I/O and process tasks are executed
by core c1 to core c6 except c4 while comparison tasks
are executed by core c1 which represents a control core
to manage failures. Note that after this multiple task
scheduling, a comparison task is allocated to core c1.

B. Algorithm

Fig.5 shows the algorithm of the proposed method. The
algorithm is an extension of the list-based scheduling al-
gorithm [10].
Lines 1 to 4 are pre-processes for multiple task schedul-

ing. First, process tasks in the task graph G are copied
2 or 3 times based on the value of ms. In addition to
the copies of process tasks, edges are also copied. Next,
comparison tasks are inserted after process tasks if cmp of
these tasks is ture. The insertion of comparison tasks also
requires the insertion of edges between process task and
comparison task, and vice versa. Third, As Soon As Pos-

- 289 -

Fig. 4. Multiple task scheduling.

sible (ASAP) and As Late As Possible (ALAP) scheduling
algorithms [10] are applied to the modified task graph to
decide the range of schedulable times under period. The
tasks that the range between ASAP start time and ALAP
start time is narrow have higher priority for scheduling.
Finally, a failure pattern set P is created with the initial
failure pattern pl where no cores are failed.

Lines 5 to 25 are multiple task scheduling for each fail-
ure pattern pl. A pl is selected in the created order. Then,
time which represents the time for scheduling and validpl

which represents whether multiple task scheduling for pl
is valid or not are initialized.

Lines 9 to 18 are repeated until time reaches to period
or all tasks are scheduled. First, executable tasks at time
are enumerated. Executable tasks are tasks whose pre-
ceding tasks are already scheduled and completed. Next,
available cores in failure pattern pl are enumerated. Then,
executable tasks are scheduled at time using available
cores. If the number of executable tasks is more than the
number of available cores, executable tasks which have
higher priority are scheduled using available cores. More-
over, scheduling is carried out considering constraints.
The first constraint is that scheduling of an executable
task using an available core does not exceed memory size
and the number of I/O of the available core. The second
constraint is that scheduling of the executable task us-
ing the available core does not exceed ma of the available
task. For example, if ma of a task is 3 and three copies
of the task are already scheduled using different cores,
copies of the tasks in the rest of failure patterns must be
scheduled using those cores. validpl

becomes true and
multiple task scheduling for failure pattern pl finishes if
all tasks are scheduled. Otherwise, time is updated and
scheduling for updated time is carried out.

New failure patterns are added to P from lines 19 to
21 if valiepl

is true and the number of failed cores is less
than fnum. For failure pattern pl, n− 1 new failure pat-
terns are created assuming that arbitrary one of available
cores except control core in pl is failed. n corresponds to

RedandantTaskAlloc(G, N)
1: Copy of process tasks based on the value of ms
2: Insertion of a comparison task for each process task

based on the value of cmp
3: Application of ASAP and ALAP scheduling algorithms

with period
4: Initialization of a failure pattern set P (P = {p1})
5: repeat the followings until P = {∅}
6: Take a pl from P in the created order
7: time = 0
8: validpl = false
9: while time <= period
10: Enumeration of executable tasks at time
11: Enumeration of available cores in pl
12: Schedule of executable tasks using available cores

considering constraints
13: if all tasks are scheduled
14: validpl = true
15: break
16: end if
17: time = time+ 1
18: end while
19: if validpl = true
20: Add new failure patterns to P
21: end if
22: if the number of each process task reachs to ma
23: break
24: end if
25:end repeat

Fig. 5. Algorithm of the proposed method

the number of available cores in pl. This failure pattern
creation strategy creates |P | failure patterns where:

|P | = 1 + Σfnum
w=1 |N |Cw

The first term (i.e., 1) represents the failure pattern with-
out filed cores and the second term represents the failure
patterns from one failed core to fnum failed cores. w
represents the number of failed cores.

After the addition of new failure patterns, multiplicity
of allocation is checked to complete the proposed method
in lines 22 to 24. If copies of each process task are sched-
uled using ma different cores until failure pattern pl, the
proposed method is completed.

Although the proposed method is completed if the num-
ber of each process task reaches to ma, we can do multi-
ple task scheduling if we would like to know the execution
time obtained by multiple task scheduling for the rest of
failure patterns. In such a case, lines 5 to 25 except lines
22 to 24 are used. In addition, line 12 must be modified
so that executable tasks are scheduled using cores that
the tasks are allocated.

- 290 -

TABLE I
Patterns that the redundant allocation is completed

size mem ms ma fnum pattern invalid

4x4 16k 1 1 0 1/1 0
1 2 1 3/16 0
1 3 2 20/121 0
1 4 3 576/576 1
2 2 0 1/1 0
2 3 1 4/16 0
2 4 2 121/121 3
3 3 0 1/1 0
3 4 1 8/16 0

4x4 32k 1 1 0 1/1 0
1 2 1 4/16 0
1 3 2 19/121 0
1 4 3 147/576 0
2 2 0 1/1 0
2 3 1 3/16 0
2 4 2 22/121 0
3 3 0 1/1 0
3 4 1 5/16 0

5x5 16k 1 1 0 1/1 0
1 2 1 3/25 0
1 3 2 30/301 0
1 4 3 600/2,325 0
2 2 0 1/1 0
2 3 1 9/25 0
2 4 2 74/301 0
3 3 0 1/1 0
3 4 1 6/25 0

6x6 16k 1 1 0 1/1 0
1 2 1 13/36 0
1 3 2 80/631 0
1 4 3 1,372/7,176 0
2 2 0 1/1 0
2 3 1 31/36 0
2 4 2 76/631 0
2 5 3 1,194/7176 0
3 3 0 1/1 0
3 4 1 23/36 0
3 5 2 43/631 0
3 6 3 1,225/7,176 0

VI. Experiments

This section describes the experiments using the pro-
posed method. The experiments described in this section
show the allocation time of the proposed method when
NoC size, memory size, and multiplicities of scheduling
and allocation are changed. In addition, we show the es-
timated execution time of a given application from multi-
ple task scheduling fixing NoC size, memory size, and the
number of failed cores. For the experiments, the proposed
method is implemented in Java and Eclipse. The experi-
ments are conducted on a Windows 8 64-bit machine with
Intel Core i5 and 8 GB memory.
The application used in the experiments is a Vehicle

dynamics control modeled by MathWorks Simulink. We
defined 112 tasks (71 are process tasks) grouping about
400 Simulink components. We set the code size and execu-
tion delay for each task except comparison task from the
objdump file by generating a C code using MathWorks
Embedded Coder and compiling the code using Altera
Nios II EDS. The code size for each task except compari-
son task is the actual code size while the execution delay
for each task except comparison task is the cycle num-
ber estimated from the objdump file. The code size and
the execution delay of comparison task are assumed as 10

and 5. cmp of all process tasks is set to true. The label
s of edge ek is calculated by multiplying the number of
connections between tasks in the Simulink model and 128
because our NoC requires 128-bits to transfer one data
packet (address, identifiers, and so on, are included). The
time constraint period is set to 10,000 clock cycles.

Currently, we are designing a reliable NoC on an Altera
field programmable gate array (FPGA) using soft-core
processor Nios II. We prepare 4x4, 5x5, and 6x6 NoC
models to know the effect of the allocation time when
NoC size is changed. For each NoC model, we assign
one control core. I/O tasks and comparison tasks are
executed at the control core. Hence, the control core is
assumed to have the enough I/O ports. The memory size
of other cores is assumed to 16 KB or 32 KB. This is
also to know the effect of the allocation time. The bit-
width cb of all channels is set to 32. The delay rdelay
for each flit to reach the destination core after a header
flit is set to 5. It implies five clock cycles. The value
of comm between cores is obtained by a linear function
comm = 5x+ 10. The variable x represents the Manhat-
tan distance between cores.

Table I shows that the redundant task allocation is com-
pleted. size represents the size of NoC models. mem
represents the memory size of cores. ms and ma repre-
sents multiplicities of scheduling and allocation. fnum
represents the expected failed cores. In the experiments,
fnum is decided by the difference between ma and ms
(e.g., fnum = 3 if ma = 4 and ms = 1). The right value
of pattern represents the total failure patterns decided by
the number of cores and the value of fnum while the right
value of pattern represents the failure pattern that the re-
dundant task allocation is completed. invalid represents
the number of failure patterns where scheduling is failed.
In the case when size, mem, and ma are 4x4, 16k, and 4,
the redundant task allocation is completed considering all
patterns. This is because the memory size is not enough
to allocate four copies of tasks. In addition, scheduling of
some failure patterns is failed. In all other cases, the re-
dundant task allocation is completed without considering
all failure patterns.

Fig.6(a) shows the allocation time of the proposed
method by changing NoC size, ma, and ms. The allo-
cation time is increased when the NoC size and fnum are
increased. This is because more failure patterns are enu-
merated. Note that fnum in the experiments is decided
by the subtraction of ms from ma. Fig.6(b) shows the al-
location time of the proposed method by changing mem-
ory size, ma, and ms. This results shows that the alloca-
tion time is reduced if the memory size of cores is enough.
If the memory size is not enough, the proposed method
explores the available memory space to allocate copies of
tasks by considering more failure patterns. The evalu-
ation of the allocation time indicates that the proposed
method can deal with realistic applications and NoC, but
we need to reduce the allocation time when failures in

- 291 -

Fig. 6. Allocation time: (a) with respect to NoC size and (b) with
respect to memory size

Fig. 7. Average execution time of failure patterns obtained by
multiple task scheduling

larger NoC are considered.

Fig.7 shows the average execution time of failure pat-
terns obtained by multiple task scheduling. For the evalu-
ation of the average execution time, multiple task schedul-
ing is applied for the rest of failure patterns even though
the redundant task allocation is completed. The NoC
size and memory size of each core are fixed to 6x6 and 16
KB. To know the average execution time of failure pat-
terns with 3 failed cores, ms and ma are set so that the
difference of ma and ms becomes 3. From this result,
the average execution time of failure patterns is increased
about 23% and 30% when ms is 2 or 3 compared to ms
is 1. This is because two or three copies of tasks are
scheduled and their results are compared at the control
core. On the other hand, the average execution time is
not changed even if the number of failed cores is increased.
This is because each core has enough memory size and
many copies of tasks are allocated to different cores. This
results shows that the redundant task allocation brings
reliable NoCs preserving the execution time.

VII. Conclusions

This paper proposed a redundant task allocation
method to realize reliable NoCs. The redundant task al-
location was based on multiple task scheduling. From the
failure pattern without failed cores, multiple task schedul-
ing is carried out under a given time constraint. If multi-
ple task scheduling satisfies the time constraint, new fail-
ure patterns are enumerated and multiple task scheduling
for them is carried out until multiplicity of allocation is
satisfied.
In the experiments, we evaluated the allocation time

of the redundant task allocation and the average execu-
tion time of failure patterns by changing parameters such
as multiplicities of scheduling and allocation. From the
experimental results, we show that the proposed method
is applicable to realistic applications and brings reliable
NoCs preserving the execution time.
Our future work is to shorten the allocation time by

the proposed method. This will be considered restricting
failure patterns.

References

[1] ARM Ltd, ”AMBA Specification 4.0”.

[2] G.De Micheli and L.Benini, ”Networks on Chips”, Mor-
gan Kaufmann, 2006.

[3] S.Pasricha and N.Dutt, ”On-chip Communication Archi-
tectures”, Morgan Kaufmann, 2008.

[4] C.Ababei and R.Katti, ”Achieving network on chip fault
tolerance by adaptive remapping”, Proc. IPDPS, pp. 1–4,
2009.

[5] O.Derin, et al., ”Online task remapping strategies for
fault-tolerant network-on-chip multiprocessors”, Proc.
NoCS, pp. 129–136, 2011.

[6] C.Lee, et al., ”A task remapping technique for reliable
multi-core embedded systems”, Proc. CODES+ISSS, pp.
307–316, 2010.

[7] Not appeared due to blind review.

[8] B.H.Meyer, et al., ”Reducing the cost of redundant execu-
tion in safety-critical systems using relaxed dedication”,
Proc. DATE, pp. 1249–1254, 2011.

[9] W J. Dally and B.Towles, ”Principles and practices of
interconnection networks”, Morgan Kaufmann, 2004.

[10] G.De Micheli, ”Principles and practices of interconnec-
tion networks”, McGraw-Hill, 1994.

- 292 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

