
Register-Bridge Architecture and its Application to Multiprocessor Systems

Takafumi Fujii Shinichi Nishizawa Kazuhito Ito

Graduate School of Science and Engineering
Saitama University

255 Shimookubo, Sakura-ku, Saitama, 338-8570, Japan
kazuhito@ees.saitama-u.ac.jp

Abstract— The interconnection delay in data transfer is be-
coming the dominant factor to restrain the improvement of the
maximum clock frequency of LSIs. The regular distributed regis-
ter (RDR) architecture is proposed where data transfer between
the islands is separated from the computation and local data ac-
cess, and distant data transfer is done using multiple clock cy-
cles. In this paper a novel register-bridge (RB) architecture is
proposed so that data transfer between adjacent islands is done
through bridge registers in between the islands, thereby the nec-
essary number of clock cycles for data transfer would be reduced.
The experimental results show about 11 % reduction in the la-
tency on average when example procedures are implemented on
a multiprocessor system based on the RB architecture.

I. INTRODUCTION

As LSI manufacturing technology evolves, the wiring delay
is relatively more increased than the logic delay and becoming
the dominant factor to restrain the improvement of the maxi-
mum applicable clock frequency of LSIs [1]. To overcome the
issue, the regular distributed register (RDR) architecture [1] is
proposed, which divides the LSI chip area into regular sized
islands and distributes data registers as well as functional units
(FUs) and controllers to the islands. FUs read data from the
registers which are local to the island (LREGs) and write the
results also to the LREGs within a clock cycle. For the data
transfer from an island to another, dedicated clock cycles are
allocated. The more distant a data transfer is, the more clock
cycles are allocated for the data transfer. Hence the clock pe-
riod is minimized despite the relative increase of wiring de-
lay. Many network-on-chips (NoC) have been designed and
the distributed register architecture is assumed [2, 3, 4].
Since the RDR architecture constrains all the islands to be of

equal size, dead space may exist in islands with a small num-
ber of FUs and registers. The huddle-based distributed register
(HDR) architecture [5, 6] is proposed, where non-regular is-
lands are allowed to improve the chip area usage by eliminat-
ing dead space. The HDR architecture also assumes that the
registers are distributed to islands and only local registers can
be accessed within a clock period.
The drawback of the RDR and HDR architectures is that

one clock cycle is necessary even for the data transfer between
adjacent islands. In [4] the routers are designed so that dis-
tant islands can be reached within a clock period, however the

above mentioned drawback still exists. In this paper a novel
register-bridge (RB) architecture is proposed. In the RB archi-
tecture, in addition to LREGs in each island, bridge registers
(BREGs) are placed in between adjacent islands. For an is-
land, its adjacent BREGs are placed on its boundary and thus
the wiring delay for the data transfer between FUs and BREGs
is not largely different from the one between FUs and LREGs.
Hence the clock period would remain as small as the case of
the RDR architecture. Since BREGs are accessed by their ad-
jacent islands similarly to the LREGs, transferring a data be-
tween two adjacent islands is achieved by simply writing the
data to a BREG by one island and reading it from the same
BREG by the other island. No dedicated clock cycle is nec-
essary for the data transfer between adjacent islands, and the
required number of clock cycles would be reduced and faster
processing might be achieved.
This paper is organized as follows. The RB architecture is

proposed in section II. The application of the RB architecture
to multiprocessor systems is considered in section III. The pro-
cessor extension necessary to implement the RB architecture
is also presented there. The experimental results are shown in
section IV, and section V concludes the work.

II. REGISTER-BRIDGE ARCHITECTURE

Figure 1 shows an example of the RDR architecture consist-
ing of 4 islands. The islands are connected with their adjacent
islands through data wires. Each island has LREGs, FU(s),
and a controller, e.g. a finite state machine (FSM). Data are
read from one or more LREGs and used by a computation in
an FU, and the computation result is stored in an LREG in the
identical island. That is, data are read from LREGs, the data
are transferred to an FU, the FU executes a computation using
the data, and the computation result is transferred to an LREG
and stored in the LREG. All these operations are performed in
one clock cycle (CC).
In the RDR architecture, data is transferred between two is-

lands as follows. One island reads a data from its local LREG
and outputs the data to the other island, and the other island
inputs the data and stores it into its local LREG. The trans-
ferred data travels from the LREG in the source island to the
LREG in the destination island. In the RDR architecture, it is
assumed that it takes one CC for the data to travel between ad-
jacent islands. For example, suppose the island i1 executes a

SASIMI 2016 ProceedingsR1-3

- 10 -

��

��
�

��

��
�

��
��
�

��

��
�

���	
���	

���	
���	
���	

���	

���	
���	

���	
���	
���	

���	

��
�

�
���

Fig. 1. Regular distributed register architecture.

���	

��

���	��
� ���	

���	

��

���	��
� ���	

���	

��

���	��
� ���	

� �
�� �� ��

� �
(a)

���	

��

���	��
� ���	

���	

��

���	��
� ���	

���	

��

���	��
� ���	

�� �� ��

��
�	

��
�	

� �
�

(b)

Fig. 2. Computations and data transfer. (a) In RDR architecture. (b) In RB
architecture.

computation using its local data and the result is then computed
in the island i3 as shown in Fig. 2(a). In the first CC (CC1), i1
executes a computation and the result is stored in an LREG in
i1. The result is read from the LREG in i1 and transferred to i3
and stored in an LREG in i3 using CC2 and CC3. Finally, i3
executes a computation using the data stored in the LREG in
CC4. Consequently, the operation takes 4 CCs.
Here an RB architecture is proposed to reduce CCs con-

sumed for data transfer. As shown in Fig. 3, BREGs are placed
between adjacent islands instead of data wire. The BREGs
can be read or written from both their adjacent islands. For
an island, its adjacent BREGs are placed on its boundaries but
still inside the island. Hence the wiring distance between FUs
and BREGs is not largely different from the distance between
FUs and LREGs. An island reads data from its LREGs or
BREGs, execute a computation in an FU, and store the result
to an LREG or a BREG within a CC, while the clock period is
almost identical to or slightly longer than the clock period in
the case of the RDR architecture.
The same operation illustrated in Fig. 2(a) for the RDR ar-

chitecture is performed as shown in Fig. 2(b) for the RB archi-
tecture. In CC1, the island i1 executes a computation and the
result is stored in an BREG between i1 and i2. Then i2 reads
the result from the BREG and stores it in a BREG between i2
and i3 in CC2. Finally, i3 executes a computation using the
data stored in the BREG in CC3. Consequently, the operation
takes only 3 CCs.

���	

��

���	��
� ���	

��

��
�

��

��
�

��

��
�

��
�	

��
�	

���	 ���	

��
�	

��
�	

��
�	

��
�	

���	 ���	

���	 ���	

���	
���	

���	

���	
���	

���	
���	
���	

���	

Fig. 3. Register-bridge architecture.

���

���������

� �

����������

���
����

�

��

���

��

�

�

�

Fig. 4. The datapath of DLX processor.

III. MULTIPROCESSOR BASED ON RB ARCHITECTURE

The application of the RB architecture for constructing mul-
tiprocessor systems is presented.

A. Base Processor

The DLX processor [7] is used as the base processor. It is
briefly reviewed. The datapath of the DLX is shown in Fig. 4.
The ALU is an arithmetic-logic unit and the registers A and
B provide the source data to the ALU. The register ALUout-
put stores the result of the ALU. There are 32 integer general
purpose registers (GPR) $0 to $31 and these GPRs form a reg-
ister file (RF). $0 is special and always reads 0. An instruction
requires at most two source data from GPR(s) and may write
the result into a destination GPR. Hence the RF is capable of
reading data from two GPRs and writing data into a GPR at
the same time. The original DLX has the floating point part
and the integer multiplier and divider, but those are omitted in
Fig. 4. The program counter, the instruction fetch unit, the in-
struction decoder, memory address and data registers for load
and store instructions exist, but are omitted for simplicity.
The execution of instructions is pipelined in 5 stages of in-

struction fetch (IF), instruction decode (ID), execution (EX),
memory access (MEM), and write back of the result (WB). In
the IF stage, an instruction is loaded from the program mem-
ory. The ID stage decodes the instruction and necessary source
data are read from the RF and stored in A and B registers. Then
the ALU executes a computation and the result is stored in the
register ALUoutput in the EX stage. For memory load and
store instructions, the memory address is calculated using the

- 11 -

���

���������

����������

���
���� ���

���������

����������

���
�������	

� �� �

Fig. 5. Bridge-register architecture.

ALU

$0
$1

$15
$24

$31
:

:

ALUoutput

ALUoutput1

A B

$
1

7
$

1
6

$19 $18

$
2

0
$

2
1

$22 $23

R
e

g
F

ile

Fig. 6. The extended processor for RB architecture.

ALU in the EX stage. In the MEM stage, the data memory is
accessed in the case of load and store instructions. For other
instructions, the MEM stage does nothing and the content of
ALUoutput is transferred to another register ALUoutput1. Fi-
nally the result of the instruction is written back to a GPR in
the WB stage.
In a normal execution of an instruction, it takes 5 CCs after

an instruction is initiated to store the result of the instruction in
a GPR in RF. In order to resolve read after write (RAW) haz-
ard in the pipelined execution of instructions, forwarding [7] is
implemented. Since the source data of the ALU are required
in the ID stage, the forwarding is performed from the EX stage
of the previous instruction (marked as ‘a’ in Fig. 4), from the
MEM stage of the 2nd previous instruction (b), and from the
WB stage of the 3rd previous instruction (c).

B. Processor extension for RB architecture

Figure 5 shows an example of a processor array based on
the RB architecture, where two processors are connected with
each other through a BREG. The detail of the processor ex-
tended for the RB architecture is shown in Fig. 6, where the
forwarding paths are omitted for readability. It is assumed that
two BREGs are allocated to each of the 4 edges of a proces-
sor, thus 8 BREGs exist in total. The 8 BREGs are mapped to
GPRs $16 to $23 so that the change in the instruction formats
is not necessary. In other words, access to GPRs $16 to $23
is translated to the access to the corresponding BREGs. Note

0

1

2

3

4

5

6

7

8

Clock
cycle

sub $3, $21, $2

add $16, $1, $2

100

76

47

mv $16, $21

23

123 123

123 123

Island i2Island i1 Island i3

$1 $2 $3$2 $16 $21 $16 $21instruction instruction instruction

(a)

0

1

2

3

4

5

6

7

8

9

Clock
cycle

add $16, $1, $2

100

76

47

in $16, fromLeft

23

123

123

123

Island i2Island i1 Island i3

$1 $2 $3$2 $16 $16 $21instruction instruction instruction

out $16, toRight

out $16, toRight in $21, fromLeft

sub $3, $21, $2

(b)

Fig. 7. An example operations. (a) In the RB architecture. (b) In the RDR
architecture.

that since BREGs are shared by adjacent two processors, the
BREGs $16 and $17 of a processor are identical to the BREGs
$21 and $20, respectively, of the processor to the right. The
BREG can be written and read by either of the two processors.
One processor writes a data into the BREG $16 and the pro-
cessor to the right reads the data from the BREG $21, thereby
a data is transferred between adjacent two processors. Simul-
taneous writing to an identical BREG by adjacent processors
is avoided by instruction scheduling.
The BREG is designed to receive a data from the output of

the ALU. Hence the result of an instruction is stored in the
BREG at the end of the EX stage. While a GPR in RF requires
5 CCs to receive a new data by executing an instruction, the
BREG requires only 3 CCs and it contributes to reduce the
latency in data communication between processors.
For an efficient data transfer from one BREG to another or

between a BREG and a GPR within a processor, the instruction
format is extended to order a ‘move’ operation. In addition to
the original opcode field, source and destination register index
fields, etc., in an instruction, two more fields are added to spec-
ify the source and the destination of the move operation. Now
a single instruction can execute at most two operations; one is
using the ALU and the other is the move. Not executing any
move is indicated by setting the destination to $0. Once an
instruction is fetched, the move is performed in the ID stage.
Figure 7(a) shows an example of three processors of the

RB architecture executing the similar operations as shown in
Fig. 2(b). The processors (islands) i1 and i2, and i2 and i3 are
respectively connected through BREGs. At CC 0, the proces-
sor i1 fetches the instruction ‘add $16, $1, $2,’ which adds the
data in the registers $1 and $2 and the sum is stored in the regis-
ter $16. The sum is computed in the EX stage of the instruction
(CC 2). Since $16 is a BREG, $16 receives the sum (= 123)
directly from the ALU and the sum is available in $16 at CC 3.
Then the data is read by the processor i2 from the BREG $21

- 12 -

���	���

���������

����������

���
���� ���	

� �

���

���������

����������

���
����

� �

Fig. 8. Regular distributed register architecture.

ALU

$0
$1

$15
$24

$31
:

:

ALUoutput

ALUoutput1

A B
$16

:
$23

R
e

g
F

ile

Fig. 9. The extended processor for RDR architecture.

and moved to the BREG $16 in CC 3. To implement this move,
i2 fetches the instruction ‘mv $16, $21’ at CC 2 and the data in
$21 is moved to $16 in the ID stage at CC 3. In this case, the
instruction only executes the move operation and the operation
using the ALU is not executed. Finally, at CC 3, the processor
i3 fetches the instruction ‘sub $3, $21, $2,’ which subtracts $2
from $21 and stores the result to $3. $3 is a normal GPR and
it receives the result in the WB stage at CC 7.

C. Processor extension for RDR architecture

For comparison, the processor array based on the RDR ar-
chitecture is considered as shown in Fig. 8. The detail of the
processor extended for the RDR architecture is shown in Fig. 9.
There is one or more communication registers (CREG) in the
processor. It is assumed in Fig. 9 that 8 CREGs are allocated
and mapped to GPRs $16 to $23. In the RDR architecture,
reading a data from a register in one island, transferring it to
an adjacent island, and storing it in a register are performed in
a single CC. Therefore, to transfer a data from one processor
to another adjacent processor, the former processor stores the
data in one of its CREGs, and then the data is copied to one of
the CREGs in the latter processor.
Similar to the BREG in the RB architecture, the CREG re-

ceives a data from the ALU at the end of the EX stage.
To implement sending a data in a CREG to an adjacent pro-

cessor and storing a data from an adjacent processor into a
CREG, the instruction format is extended to add fields which

Island
i1

Island
i2

Island
i3

Island
i6

Island
i5

Island
i4

Fig. 10. A processor array.

�������	�
���

������������
��������
�� ����	�
���
������������
������
������������ �
������
����
����������
���
�������������
��������
 ����������	�!
�
�
��������������
������
�������������� �
������
�
���
�����������
���
��������������
��������
������������	�!
���
�������������� �
������
�����

Fig. 11. A part of the C source of the procedure ‘coder’ in ADPCM [8].

order an ‘out’ operation to send a data to an adjacent processor
or an ‘in’ operation to receive a data from an adjacent pro-
cessor. In addition, a ‘move’ operation is also supported to
exchange a data between a CREG and a GPR.
Figure 7(b) shows an example of three processors of the

RDR architecture executing the similar operations as shown
in Fig. 2(a). The processors (islands) i1 and i2, and i2 and i3
are respectively connected through data wire. At CC 0, the
processor i1 fetches the instruction ‘add $16, $1, $2.’ Since
$16 is a CREG, the result (the sum = 123) is available in $16
at CC 3. The processor i1 also fetches ‘out $16, toRight’ at
CC 2, which sends the data in $16 to the processor i2 at CC 3.
The processor i2 fetches ‘in $16, fromLeft’ at CC 2, which re-
ceives the data from i1 and stores it in the CREG $16 in i2 at
CC 3, and the data is available in $16 at CC 4. i2 also fetches
‘out $16, toRight’ at CC 3, which sends the data in $16 to the
processor i3 at CC 4. At CC 3, the processor i3 fetches ‘in
$21, fromLeft,’ which stores the received data in $21 at CC 4.
Finally, at CC 4, the processor i3 fetches the instruction ‘sub
$3, $21, $2,’ and the result is stored in $3 in the WB stage at
CC 8.
As can be seen from the example, the processor array of the

RB architecture executes the operations one CC shorter than
that of the RDR architecture.

IV. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed RB architecture,
practical procedures were mapped onto the processor array of
the RB architecture. The procedures ‘coder’ and ‘decoder’ in
ADPCM inMediaBench [8] were selected as examples and the
processor array size was assumed to be 2×3. The processors
are named ‘Island i1’ to ‘Island i6’ as shown in Fig. 10.
Figure 11 shows a part of the C source of the procedure

- 13 -

0

1

2

3

4

5

6

7

8

9

10

Clock cycle

Island i2Island i5 Island i3BREG BREG

slt S1, diff, step1

$B1$2 $B2$B0 $B3Program Program Program

bnez S1, T1

sub diff, diff, step1

bnez S1, T1

addi delta, $0, 4

T1: bnez S1, T2

ori delta, delta, 2

add delta, $0, $0

srai step2, step1, 1

add vpdiff, vpdiff, step1

T1: srai step3, step2, 1

add vpdiff, vpdiff, step2

add vpdiff, vpdiff, step3

bnez S2, T2

T2: bnez S3, T3

step2

step3

step1

mv $2, $B0

mv $2, $B0

mv $2, $B0

T1: slt S2, diff, step2

bnez S2, T2

sub diff, diff, step2

T2: slt S3, diff, step3

bnez S3, T3

T3: ori delta, delta, 1

or delta, delta, sign

bnez S1, T1

T2: nop

mv $B2, $B1

mv $B1, $B2

T3:

step2

step3

S1

S2

S3

step1

S1

S2 delta

delta

nop

(a)

0

1

2

3

4

5

6

7

8

9

10

Clock cycle

11

12

slt S1, diff, step1

bnez S1, T1

sub diff, diff, step1

bnez S1, T1

addi delta, $0, 4

T1: bnez S1, T2

ori delta, delta, 2

add delta, $0, $0

add vpdiff, vpdiff, step1

srai step3, step2, 1

add vpdiff, vpdiff, step2

add vpdiff, vpdiff, step3

delta

out $C0, toRight

T1: slt S2, diff, step2

bnez S2, T2

sub diff, diff, step2

T2: slt S3, diff, step3

ori delta, delta, 1

T3: or delta, delta, sign

T2: nop

S1

S2

nop

out $C2, toRight

in $C1, fromLeft

out $C2, toRight

in $C0, fromRight

in $C3, fromLeft

in $C3, fromLeft

out $C3, toLeftin $C2, fromRight

S2

delta

bnez S1, T1
S1

S1

bnez S2, T2

S2

bnez S3, T3

S3

S3

step3

step3

step2

step2

out $C0, toRight

srai step2, step1, 1

in $C0, fromRight

in $C1, fromLeft

out $C2, toLeft

out $C2, toLeft

T1: nop

T2: nop

nop

nop

bnez S3, T3

Island i2Island i5 Island i3

$C1 $C2$C0 $C3Program Program Program

(b)

Fig. 12. Optimized compilation results for the C source shown in Fig. 11. (a) RB architecture. (b) RDR architecture.

TABLE I
INSTRUCTIONS OF THE PROCESSORS

instruction operation
add dst, src1, src2 dst ← src1+ src2
addi dst, src1, im dst ← src1+ im
bnez src, label branch to label if src �= 0
nop do nothing
or dst, src1, src2 dst ← src1 | src2
ori dst, src1, im dst ← src1 | im
slt dst, src1, src2 dst ← 1 if src1 < src2, 0 otherwise
srai dst, src1, im dst ← src1 >> im
sub dst, src1, src2 dst ← src1− src2

mv dst, src dst ← src
in dst, src receive a data from src and store in dst
out src, dst read a data from src and send to dst

‘coder.’ The results of the optimized compilation, which con-
sists of the scheduling and mapping of instructions, of the C
source are shown in Fig. 12 for both RB and RDR architec-
tures. Figure 12 only shows the islands which execute the in-
structions compiled from the C source shown in Fig. 11. The
instructions employed in the results are described in Table I.
In Fig. 12, some of the source and destination of instructions
are indicated not with the register index but with the variable
name in the C source and the register assignment is omitted for
readability. Note that the source data of the instructions is ac-
cessed in the ID stage of the execution, which is one CC after
the instruction is started.
In the case of the RB architecture (Fig. 12(a)), the variable

delta in the C source is maintained in the processor i3, diff in

i2, and step and vpdiff in i5. The line 1 of the C source (denoted
as L1) is implemented by the add instruction in i3 at CC 2. The
comparison in L2 is implemented by the slt instruction in i2 at
CC 0. The slt instruction reads the value of step, denoted as
‘step1,’ from the BREG $B0 between i2 and i5 at CC 1. The
bnez instruction at CC 1 skips the next sub instruction if the
condition diff ≥ step is not true. The result of the slt instruc-
tion at CC 0, denoted as ‘S1,’ is stored in BREG $B1 and avail-
able at CC 3. It is referenced by the bnez instruction started at
CC 2 in i5 and controls the execution of the add instruction
at CC 3 compiled from L5. S1 is moved from BREG $B1 to
BREG $B2 by the mv instruction at CC 2 in i2. It is important
to note that the mv instruction follows the bnez instruction at
CC 1. When the branch is taken in the bnez instruction, the
IF and ID stages of the following instruction are always per-
formed in the pipelined instruction execution. Therefore the
move is always performed regardless of whether the branch is
taken or not taken. S1 is transferred to $B2 and used by the
bnez instruction started at CC 3 in i3 to control the execution
of the addi instruction at CC 4 compiled from L3. While the
comparison result S1 is first stored in $B1 and then moved to
$B2, S2 is first stored in $B2 and then moved to $B1. This is
to perform the update of delta compiled from L9 as early as
possible.
The value of step is changed in L7 and it is implemented by

the srai instruction at CC 1 in i5. The new value, denoted as
‘step2,’ is stored in $B0 at CC 4. The previous value ‘step1’
is referenced at CC 3 in i5 by the add instruction. The add
instruction cannot read ‘step1’ from $B0 because the updated
‘step2’ is passed from the srai instruction by forwarding. To
suppress the forwarding, the value ‘step1’ is moved to GPR

- 14 -

TABLE II
COMPARISON OF CLOCK CYCLES AND LATENCY

clock cycles latency [ns]
procedure RDR arch. RB arch. RDR arch. RB arch.
coder 37 33 250 228

(−10.8 %) (−8.97 %)
decoder 34 29 230 200

(−14.7 %) (−12.9 %)
average −12.7 % −10.9 %

$2 by the mv instruction at CC 1 and the add instruction at
CC 3 reads ‘step1’ from $2. Consequently, the RB architecture
implements the procedure for 10 CCs as shown in Fig. 12(a).
In the case of the RDR architecture (Fig. 12(b)), the variable

delta in the C source is maintained in the processor i3, diff and
vpdiff in i2, and step in i5. The comparison in L2 is imple-
mented by the slt instruction in i2 at CC 1. The value of step,
denoted as ‘step1,’ has been transferred from i5 and exists in
CREG $C1 in i2 at CC 2. The result of the slt instruction at
CC 1, denoted as ‘S1,’ is stored in CREG $C2 in CC 4 and
transferred to CREG $C3 in i3 at CC 5. Hence the bnez in-
struction in i3 is started at CC 3 and controls the execution of
the add instruction at CC 5 compiled from L5. As shown in
Fig. 12(b), 13 CCs are used to implement the procedure. Since
the srai instruction in i5 at CC 0 can be started earlier, the re-
quired CCs is reduced to 12 for the RDR architecture.
Table II compares the CCs of the procedures ‘coder’ and

‘decoder’ complied for the conventional RDR and the pro-
posed RB architectures. The RB architecture reduces the re-
quired CCs for the coder and the decoder by 10.8 % and
14.7 %, respectively.
The proposed RB architecture and the conventional RDR

architecture were implemented in VHDL. The word length of
the processor is 32 bits and the processor has an ALU but no
integer multiplier, divider, nor floating-point units. The length
of the baseline DLX instruction is 32 bits. The mv, out, and in
instructions were encoded with 10 bits, hence the total length
of the instruction word is 42 bits. The Harvard architecture was
adopted for the memory, and the capacity of the instruction
memory and the data memory were 42× 1024 bits and 32×
1024, respectively.
The HDL description was synthesized targeting a commer-

cial FPGA device xc7k70tfbv676-1 (Kintex-7) from Xilinx
Inc. [9]. The used FPGA design tool was Vivado 2015.2 Web-
PACK [9] and was run with the maximum clock period con-
straint of 7 ns. Table III shows the maximum applicable clock
frequency (Fmax), and logic resource usage in the number of
slices (SLICE), and the memory resource usage in the num-
ber of memory blocks (BRAM). ‘BRAM’ is a 36× 1024-bit
memory block embedded in the FPGA device.
The results show that Fmax of the proposed BR architecture

is 2.03 % slower than the conventional RDR architecture. This
is because more multiplexors are needed at the input of the
BREGs to select the data from their two adjacent processors.
The total latency of an operation is evaluated by the product

of the number of clock cycles and the clock period. The num-

TABLE III
SYNTHESIS RESULTS

architecture Fmax [MHz] #SLICE #BRAM
RDR arch. 148.0 15451 22.5
RB arch. 145.0 (−2.03%) 18414 (+19.2%) 22.5

ber of clock cycles of the RB architecture is reduced by 12.7 %
on average, and the clock period is increased by 2.03 % from
those of the RDR architecture. Consequently, the latency of
the proposed RB architecture is reduced by 10.9 % on average
compared to the conventional RDR architecture as shown in
Table II at the expense of 19.2 % increase in logic usage.

V. CONCLUSIONS

In this paper a register-bridge architecture is proposed to
achieve faster processing than the conventional RDR archi-
tecture by reducing the clock cycles for data transfer between
islands. The proposed RB architecture was applied to multi-
processor systems and the latency is reduced by about 11 %
on average for example procedures from the RDR architecture
when the designed multiprocessor systems were synthesized
targeting FPGA.
The analysis of the cause of increase in logic usage, and the

automation of optimizing the scheduling and mapping remain
as future work.

REFERENCES

[1] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architec-
ture and synthesis for on-chip multicycle communication,” IEEE
Trans. Computer-Aided Design Integrated Cirtuit. Syst., vol. 23,
no. 4, pp. 550–564, Apr. 2004.

[2] G. Chen, F. Li, and M. Kandemir, “Compiler-directed channel
allocation for saving power in on-chip networks,” in Proc. of 33rd
ACM SIGPLAN-SIGACT Symp. POPL ’06, 2006, pp. 194–205.

[3] S. Park, T. Krishna, C.-H. O. Chen, B. Daya, A. P. Chandrakasan,
and L.-S. Peh, “Approaching the theoretical limits of a mesh NoC
with a 16-node chip prototype in 45nm SOI,” in Proc. DAC ’12,
2012, pp. 398–405.

[4] T. Krishna, C.-H. O. Chen, W.-C. Kwon, and L.-S. Peh, “Smart:
Single-cycle multihop traversals over a shared network on chip,”
IEEE Micro, vol. 34, no. 3, pp. 43–56, 2014.

[5] S. Abe, M. Yanagisawa, and N. Togawa, “An energy-efficient
high-level synthesis algorithm for huddle-based distributed-
register architectures,” in Proc. ISCAS, 2012, pp. 576–579.

[6] H. Akasaka, S. Abe, M. Yanagisawa, and N. Togawa, “Energy-
efficient high-level synthesis for HDR architectures with clock
gating based on concurrency-oriented scheduling,” IPSJ Trans.
System LSI Design Methodology, vol. 6, pp. 101–111, 2013.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc.,
1990.

[8] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Media-
Bench: A tool for evaluating and synthesizing multimedia and
communicatons systems,” in Proc. 30th Annual ACM/IEEE Int.
Symp. on Microarch., 1997, pp. 330–335.

[9] Xilinx Inc., http://www.xilinx.com/.

- 15 -

