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Abstract— This paper presents techniques for implementing
fast cycle-accurate processor simulators based on ahead of time
compilation (AoT). AoT is usually assumed to suffer from a large
compilation overhead, and is difficult to implement due to the dy-
namic behavior of some instructions. The paper explains how to
overcome these issues and presents experiments with MIPS pro-
cessor simulators showing that our approach can surpass state
of the art methods and can simulate more than one billion clock
cycles per second.

I. INTRODUCTION

Processor simulators are nowadays standard tools for em-

bedded systems design. Allowing early verification, they sig-

nificantly reduce the design cost, but traditionally suffered

from very slow execution speed. In the past decade, tech-

niques like binary translation (BT) [17] and just in time com-

pilation/translation (JIT) [4] considerably increased their per-

formance so that recent simulators like QEMU [5] are able to

simulate tens to hundreds of millions of instructions per sec-

ond. These techniques take root from compiled simulation [13]

that simulates the execution of a binary program on a given

processor by translating this binary into a C program. This

program is then compiled and executed on the host computer.

This method has given promising results but prove to be hard

to apply on programs including branch instructions whose tar-

get addresses are known at run time only – in this paper, we

call such instructions dynamic branches. Moreover, the com-
pilation step of this approach considerably degrades its global

performance.

This paper presents a set of techniques for overcoming the

limitations with the dynamic branches, and shows the effi-

ciency of persistent caching for overcoming the performance

loss due to the compilation step. It also presents how the

pipeline is simulated for achieving cycle-accuracy. These tech-

niques are integrated into a framework which generates ahead

of time compilation (AoT) processor simulators. AoT is a sim-
ulation method used in some virtual machines [15]. It includes

all the translation, compilation and execution steps into an au-

tomatic flow. Our experiments showed that the generated sim-

ulators can execute about 1 billion cycles per second and sur-

pass simulators based on JIT or BT techniques. The rest of

the paper is as follows: section II gives some related works,

section III explains the techniques used for high speed simu-

lation, section IV gives some experimental results and related

discussions before section V which concludes the paper.

II. RELATED WORKS

Since the initial interpretation-based simulators, several

techniques have been proposed for accelerating the execution

so that recent simulators like [16, 6, 21, 20, 5, 3, 14, 8, 10, 11,

12, 18, 19], can achieve tens to hundreds of millions of simu-

lated instructions per second.

In order to improve the performance of processor simula-

tors, the most successful approach has been to convert the bi-

nary code which is to be executed on the simulated processor

into native code for the host, and then to execute this native

code. Compiled simulation was the first technique implement-

ing this approach. This technique, presented in the introduc-

tion, suffers from limitations for handling dynamic branches

and from compilation overhead. Hence, instead of generat-

ing a C program it has been proposed to directly generate host

binary. This technique, called binary translation (BT) [17],

proved to be more efficient than compiled simulation, but has

the same weakness regarding the dynamic branches. To solve

this, BT has been enhanced with Just-In-Time (JIT) [4] trans-

lation1. This latter technique translates the input binary as long

as no dynamic branch is met, switches to interpretation mode

when such branches are met, determines the target address, and

switches back to BT mode from this address for a new transla-

tion and execution pass [6, 20, 5, 3, 11, 18]. A few other ap-

proaches mixed compiled simulation and JIT [7, 14, 8, 10, 19].

While achieving poorer results, such approaches are much sim-

pler to implement, and can prove useful when a new processor

simulator is to be implemented from scratch.

Compared with recent BT and JIT-based simulators, the ap-

proach presented in this paper is different in two ways: first

it tackles the problem of the dynamic branches, from which it

1Such a combination is sometimes called dynamic binary translation.
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is able to translate the totality of the input binary into a sin-

gle program. Second, we assumed that the gain achieved by

advanced optimizations of recent compilers, only applicable

on high-level representations (IR) of the program (like static

single assignment [9]), overcomes the compilation cost when

combined with simple caching techniques.

The approach of paper [8] looks similar to ours since it also

aims at handling dynamic branches without using JIT. How-

ever, in the details, their method is very different since it is

actually close to disassembling the input binary. First it builds

the control and data flow graph (CDFG) from the input bi-

nary, then it translates it to a C program that simulates it. With

this approach, each function of the input binary is translated

to a function in the simulation C program. Dynamic branches,

which are often the consequence of calls to pointers to func-

tions, are simulated alike: through pointer to function in the

simulation program. While looking more natural than our

direct translation approach, there are several difficult points.

First, it is hard to extract a CDFG from the recent highly op-

timized input binaries. Especially, function calls and returns

might be hard to detect since they can be, for optimization

purpose, converted to standard jumps. Second, a CDFG is

once again built and analyzed when compiling the simulation

C code, which means that the same complex operations are

performed twice. Third, C function calls and returns also in-

clude the stack management, yet the instructions implementing

this management in the input binary must still be simulated.

Once again, this approach ends up with twice the same oper-

ations, once for the input binary stack, and one for the host

stack. Finally, some dynamic branches are not due to pointer

to function, but either to switch/case statements, or arbitrary

branches. If the former case is supported (through function

calls), the latter is not.

III. THE PROCESSOR SIMULATION

A. The global framework

Instead of designing a simulator for a specific processor, we

designed a framework able to generate a processor simulator

from a file describing the characteristics of each instruction,

i.e., their machine code, their behavior at each stage of the

pipeline and so on. The generated simulator then takes as in-

put the program to execute, converts it to C code, compiles it to

native code and launches the execution of this latter code. The

details about the generation of simulators are beyond the scope

of this paper and are therefore omitted for sake of concision.

B. Caching the compiled native code

Usually, during the design of an embedded system, the same

program is simulated several times, either with different hard-

ware configurations or with different input data sets. Hence,

we added to the generated simulators a persistent cache that

makes it possible to reuse previously compiled host code when

subsequent simulation runs are to be performed. The imple-

mentation of this cache is straightforward: the compiled host
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Fig. 1. Implementation of a branch instruction

code is saved as dynamic libraries whose file names are made

of the input binary file name and the start address of the corre-

sponding code chunk. Then, when simulating another time the

same input binary, the C code generation and compilation steps

are skipped and instead, the corresponding dynamic libraries

are loaded. The input binary is still loaded, though, in order to

fill the simulated processor’s memory. Thereby, if a new data

set is used, leading to a different binary, the cache is still used

while the processor’s memory content is valid. The main draw-

back of this simple approach is that if the code part of the input

binary has been modified2 the cache must be cleaned manually

(change in the data does not require to clean the cache).

C. Implementation of the branch instruction

C.1. The general technique

Basically, the branch instructions are implemented in C using

the goto statement. For that purpose there must be a label for

each possible target of a branch instruction. In the simulator,

such labels are named using the address they represent in the

input binary. For instance, Fig. 1 shows the implementation

of a branch back to address 8088. In the figure, line 3 is the

implementation of an addition instruction where r is the ar-
ray representing the general purpose registers. Then lines 6–7

are the implementation of the branch instruction: it sets the pc
variable (representing the program counter) to the target ad-

dress, and performs the actual branch with the goto of line 7.

This simple technique is sufficient if the target address is

known at compile time, but is ineffective otherwise, i.e., with

dynamic branches. For such cases we use the possibility given

by recent C compilers to use goto on pointers to labels [1].

For that purpose, the simulator produces a lookup table of all

the possible targets for a dynamic branch (cf. section C.2).

Since the code is usually much smaller than the data, this ta-

ble is implemented as an array whose index is the address in

the binary code of the branch target. If the processor has some

alignment restrictions, as it is the case for a majority of 16-bit

and over processors, this index address is divided by the size

of the alignment to reduce the size of the table. For instance,

with the MIPS IV processor [2], the size of the table can be

reduced by four. Fig. 2 gives an example of a label table, and

the implementation of an instruction which branches to the ad-

dress given by a register. In the figure, a portion of the table

is given lines 2–8, where the unary operators && are used to

take the address of a label, and where NULL is the null pointer
and indicates that no label is required for the corresponding

address. The branch is implemented lines 12–18. Line 12 sets

the program counter to the address given by register $1 (r[1]

2For instance, because of bug fixes.
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Fig. 2. Implementation of dynamic branches with pointer to labels

in the code), line 13 gets the label corresponding to this ad-

dress3 from the label table and line 14 checks the validity of

the label. If it is valid, the branch is implemented by the goto

of line 15. In the very unlikely case where a label is invalid,

i.e., the corresponding entry in the table is NULL, the simula-

tors enters temporarily in JIT mode (line 17 in the figure), to

generate a new portion of C code where the required label is

present. Such cases happen when the branch target detection

described in the next section overlooked an address. Since the

implementation of this JIT mode has no original feature and

due to lack of room, its description is omitted in this paper.

C.2. Detecting the targets of the branch instructions

In theory, it is enough put a label before each simulated in-

struction in the generated C code for ensuring that each target

address of branches corresponds to one label in the code. How-

ever, the resulting code will take more time to compile and will

be far less optimized4. Actually, such a code is similar to code

produced by a BT approach (cf. section IV.A). Hence, it is

much better to insert the necessary labels and only them. To

that end, our framework supports four cases: the branch is not

dynamic, the branch is dynamic and implements a return from

a function, it implements a call to a function pointer, or it im-

plements a switch/case statement. Other cases are possible but

are unlikely, especially if the input binary has been generated

by a compiler. These unsupported cases are treated at simula-

tion time in JIT mode as explained in the previous section.

The first case is straightforward since the target address is

embedded in the branch instruction so that it is directly acces-

sible at compile time. The second case is easy too, since a

return instruction always branches to the instruction following

a call (or one of the subsequent instructions, depending on the

target processor). Therefore each instruction following a call

(or one of its subsequents) has to be labelled. The third and

forth cases are more complex to handle. For them it is neces-

sary to consider how the compiler implements them. For the

call to function pointer case, the target address is stored as a

global value. For the case of the switch/case, the addresses

of each switch block’s statement are stored in a lookup table

whose index is computed using the condition expression of the

3The address is converted to a label index by removing the code’s starting

address and dividing the result by four since instructions are all 4 byte long.
4Since there will be more basic blocks.

switch. For both cases, it is common for compilers to store

these addresses in a section dedicated to the constant data in

the resulting binary. For instance, gcc [1] stores them into the

rodata section. Therefore, the possible target addresses of such
dynamic branches can be found by scanning the relevant sec-

tion of the input binary. However, other kinds of data are also

stored into the section, e.g., the content of the string literals. In

the framework, the number of false target addresses is reduced

by discarding the values that do not correspond to addresses in

the range of the executable code and ones that do not match the

alignment requirements of the processor. In the experiments,

this prove to be enough for removing a majority of such false

addresses, since at worst, only five of them did remain.

D. Cycle-accurate simulation

In this paper, by cycle-accurate simulation, we mean that

the simulated time in cycles when executing any portion of the

input binary matches the one of the real processor. With this

objective, it is not important to reproduce exactly the internal

behavior of the processor, but instead it enough to ensure that

the execution order and the time is valid after each instruction

completes. This is trivial for a non-pipelined processor: after

the simulation of each instruction, the cycle counter is simply

increased by the number of cycles used by the instruction.

For a pipelined processor, an instruction completes at each

cycle (or each fixed number of cycles) in a majority of the

cases, but there may be variations due to stalls, or out of or-

der instruction completions. These variations depend on the

execution flow, hence we simulate them using flags for their

detection and predicates for guarding the implementation of

their actual effect. Depending on the simulated processor, the

detection flags may be set when specific instructions are exe-

cuted (e.g., branches), when resources are overused (counters

are used for such a detection) or when accessed registers are

not up-to-date. The latter case requires to associate a flag to

each register: when an instruction writing to a given register

is loaded, the corresponding flag is set, so that a further read

access can be stalled, and unset when the register is updated.

Such operations can severely slow down the simulation speed,

but using our AoT approach, the optimizations of the compiler

can discard them when they are not required5, which is the

most frequent case.

As an illustration, with the MIPS IV processor which has

been used in our experiments, an instruction following a

branch instruction is executed before the branch is taken. Fig. 3

shows the management of the pipeline for such a branch in-

struction. In the figure, a branch instruction is located line 2

where the jmp flag is set to one. This branch is actually taken
lines 8–10, i.e., after the following instruction located line 5 is

executed. For that purpose, jmp is checked line 7 to decide

if the branch is to perform or not. This way, if an execution

flow goes to address 7096 (line 3 in the code) without passing
through the instruction of line 2, the code of lines 8–10 is not

executed, which matches the real processor’s behavior.

5For instance if there is no dependency among some instructions.
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Fig. 3. Example of the handling of pipeline effects
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Fig. 4. Example of code produced in BT mode

IV. EXPERIMENTS

A. Setup

In order to compare the performance of the proposed ap-

proach with BT and JIT-based approaches we enhanced our

framework with support of such techniques. The goal was to

achieve a fair comparison: apart from the core techniques, sev-

eral implementation details might cause strong variations in

the performances. The framework already includes a JIT mode

(cf. section III.C), the generated simulator is hence configured

to be in this mode all the time for implementing a JIT-based

approach. However, including a full implementation of BT

would have required to completely change the processor simu-

lator generation core of the framework. Instead, we simulated

the BT mode by generating C code whose compilation result

is equivalent to what would be the result of a real BT. The idea

is that BT should be equivalent to compiling a program where

each basic block corresponds to the simulation of one instruc-

tion. Hence we added to the framework a mode where such a C

code is generated (basically, this code includes a label for each

simulated instruction, and dummy branches that prevent the

basic blocks from being merged or removed by the optimiza-

tions). Fig. 4 shows some assembly code produced by the BT

mode (after being compiled), which is actually very close to

what we produced by hand when studying BT. For sake of un-

derstanding, the corresponding C code is given as comments

on the right of the assembly code (count is the clock cycle
counter). Note that when measuring time with the emulated

BT approaches, we removed the compilation time to match an

actual BT approach.

This modified framework has been tested with the combi-

nations of techniques given in table I. In the table, Name is
the name of the configuration, AoT / JIT indicates if our AoT

approach is used or if JIT is used, C / BT indicates if C is gen-

erated then compiled or if BT is used, and First / Next indi-
cates if it is the first simulation run (i.e., the simulation cache

is empty and misses will happen) or if it is a subsequent one

TABLE I

THE SIMULATOR CONFIGURATIONS
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(i.e., simulation cache miss does not happen). Among the

configurations, AoT C is the approach proposed in this paper

— AoT C f being this configuration used for the first simu-

lation run — and JIT BT is the one used in recent simulators

like [6, 20, 5, 3, 11, 18]. In order to see the advantage of each

specific technique, AoT BT and JIT C have also been tested.

The applications used for the experiments are taken from the

Dhrystone (dhry in the graphs’ results), and the MiBench (the
other applications) benchmarks. Each application includes a

few dynamic branches: from 0.001% of the executed instruc-

tions for crc (a MiBench application) to 3% for dhry, and 1%
on average. In addition, since the simulations are extremely

fast, the input data have been enlarged for several applications

in order to achieve measurable execution times.

Finally, the compiler used for generating the native code is

gcc 4.2.1 and the host is a MacBook Pro computer equipped

with a 2.5Gz Intel Core i5, 8GB of RAM and 375 GB of SSD.

B. Results

Fig. 5 gives the execution speeds of each approach for each

application. As it can be seen in the figure, using JIT is less ef-

ficient than using our AoT approach, which confirms the merits

of the proposed techniques for handling branches. This result

is not surprising since the cost of dynamic branches includes

not only the change of execution mode, but also the require-

ment of compiling or loading a new portion of code and the

lack of optimizations induced by the fragmentation of the sim-

ulation code. The difference between the first and the second

run is also very large, which shows the importance of caching,

since without it, using AoT BT (our AoT approach combined

with BT) prove to be better in a majority of the cases. On the

contrary, AoT C surpasses all the other approaches in the sec-

ond run for all the cases. In order to analyze more finely the

respective performance of the approaches, Fig. 6 gives the rel-

ative execution time of each step of the simulation process. In

the figure, load is the time for loading the input binary file from
the host’s disk to the simulated processor’s memory, translate
is the time for translating it to C (or the target binary for BT)

and detecting the target addresses of the dynamic branches,

compile is the time for compiling the C or loading the already

compiled/generated host binary, and simulate is the time for
the actual simulation. For sake of readability, only AoT C and

AoT BT are shown (the JIT-based approaches have about the

same figures, apart from the simulation time which is larger).

As seen in the figure, the load time is sometimes very large

compared to the simulation time (e.g., rijndael). This is due to
the important size of the input data set of some applications.
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Fig. 5. The execution speeds of the different simulation approaches
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Fig. 6. The detailed execution times of the different simulation approaches
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Fig. 7. The simulations speeds with and without the file loading time
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Real-world applications (not formatted for a benchmark) tak-

ing their input data from some input devices should not be that

long to load. By contrast, the translation time is usually neg-

ligible. More realistic results may be obtained by removing

the load time. This is shown in Fig. 7, where the execution

speed is given, with and without the load times, for AoT C

and AoT BT. This last figure shows that, both approach are

very fast, but, without the load time, AoT C is on average 40%

faster than AoT BT. This confirms that the C compiler’s result-

ing code is more efficient than the one achieved by BT.

V. CONCLUSION

This paper presented an approach for producing very fast

cycle accurate processor simulators using ahead of time com-

pilation. Several techniques are introduced for supporting dy-

namic branches and pipeline, while persistent caching is used

for reducing the compilation time among several simulation

runs. Experiments showed that a MIPS IV processor simulator

generated by our framework can execute more than one billion

cycles per second and surpasses state of the art ones based on

just in time compilation or binary translation.

As future work, we plan to see how to speed up the simula-

tion of the communication with peripherals in order to produce

very fast simulators for complete embedded systems.
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