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Abstract— Formal verification methods for syn-

chronous circuits are widely used, but almost all of

the methods are limited to single-clock synchronous

circuits. In this paper, we propose a formal verifica-

tion method for multi-clock synchronous circuits. The

proposed verification method is in theorem-proving

manner and based on multimodal logic. We also show

an example of verification of a clock switching circuit

by using the method.

I. Introduction

Formal methods for hardware verification are being
more widely adopted because of demands of comprehen-
sive verification. Formal verification methods can be clas-
sified into equivalence-checking methods and property-
checking methods; in this article, we focus on the latter
type. Many tools for property checking have been released
by major electronic design automation (EDA) companies,
although nearly all of such tools are limited to working
with only single-clock synchronous circuits.
Clarke et al. have proposed a verification method

for multi-clock synchronous circuits that employs model
checking tool in [1]. However, that method requires spec-
ifying the relations between clocks; it cannot be applied
to sets of unrelated clocks.
In this article, we adopt a theorem-proving verification.

Theorem-proving has been applied to circuit verifications
since the 1980s [2, 3], but there has been no applications
for multi-clock synchronous circuits. We propose a deduc-
tion system for multi-clock synchronous circuits, which is
suitable even when the clocks are unrelated. The verifica-
tion system is based on multimodal logic [4], and we also
a verification example on that.

II. Verification system based on multimodal logic

A. Circuits definition

A multi-clock synchronous circuit is expressed as shown
in Fig. 1. We assume hereinafter that the behavior of the
circuit is observed under totally ordered discrete times
(e.g. natural numbers). A temporal logic is built as a
Kripke semantics characterized by a set of times T and
a binary relation R on T . Temporal logic has two unary
operators that we use here: the Globally operator �, and
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Fig. 1.: Multi-clock synchronous circuit

the Next operator ©. For a given test pattern pt, we can
define a new operator i© that represents the concept of
‘next’ for FFi along with pt. We let the operator i©P
mean that P holds at each time point which passes one
edge-of-clock for FFi. We use R© and R i© to denote
binary relations of © and i©, respectively.
A multi-clock synchronous circuit can be described by

using these new operators in the following equation sys-
tem: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

out = f∗(a, (s0, · · · , sn))
0©s0 = f∗0(a, (s0, · · · , sn))

...
n©sn = f∗n(a, (s0, · · · , sn)) .

(1)

Where, a is input, out is output, si is the state of FFi,
f∗ is the output function of the combinational part, and
f∗i is the state function for FFi.

B. Definition of deduction system
The axioms for our deduction system are defined as

the following properties, which consist of the semantics of
the previous subsection. (Where, ♦ is defined as ♦P :=
¬�¬P in the conventional way.)

Definition 1. (Axioms of the verification system)

Axiom T : �P ⇒ P
Axiom 4 : �P ⇒ ��P
Axiom V1 : �P ⇒ ©P
Axiom V2 : P ⇒ ♦P
Axiom V3 : When ∃t′ . t R© t′, t |= ©♦P ⇒ ♦P
Axiom V4 : When ∃t′ . t R© t′, t |= ©si = si or i©si

(where si is the state of FFi)
Axiom VN1 : (0 |= P and P ⇒ ©P ) ⇒ �P
Axiom VN2 : when ∃t′ . t R i© t′, ∃n . ( t |= i© = ©n )

Where, t |= P means that P holds at time t. Axioms T
and 4 are equivalent to axioms of general multimodal logic
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Fig. 2.: Clock selector CLKSEL

theory [4]; they represent the reflexivity and transitivity,
respectively, of relations on Kripke semantics. From our
assumption of a totally ordered discrete time space, it
follows immediately that those two axioms hold. Axiom
V1 and the axioms below it are novel. Axioms V1 to
V4 show the relations between �, ♦, ©, and i©. Axiom
VN1 describes the principle of mathematical induction.
The © operator is regarded as the unit time of behavior
evaluation; this lets Axiom VN2 follow from the system.

Definition 2. (The verification system) The proposing
verification system consists of a pair of the axioms and
the modal description of circuit (1).

III. Verification example: clock selector

We adopt the previously defined system and use it to
verify the clock selector circuit CLKSEL depicted in Fig.
2. Panel (b) is a synchronous depiction of the same cir-
cuit as shown in panel (a). CLKSEL outputs clk0 when
sel1 = 0, and clk1 when sel1 = 1. Glitch noises are
avoided by waiting for the low value during the exchang-
ing phase. (For our purposes, we take “glitch noise” as a
short pulse whose length is less than the both of low and
high periods of the two clocks.) Figure 3 shows the timing
chart of the following behavior: at first, clk0 is activated
by sel1 = 0, and then clk1 is activated by sel1 = 1. The
circuit enters the “exchanging” phase at the first edge of
clk0 after sel = 1. Neither clk0 nor clk1 is derived during
the exchanging phase. After, en1 becomes 1 at the first
edge of clk1 and CLKSEL begins clk1 output. Let 0©
be a modal operator for the FF that yields en0 (which is
synchronized by clk0), and let 1© be a modal operator for
the FF that yields en1 (which is synchronized by clk1.)
Then, CLKSEL can be represented as follows:

⎧⎪⎨
⎪⎩

out = en0 & clk0 | en1 & clk1

0©en0 = sel1 & en1

1©en1 = sel1 & en0.

(2)

We assume that following requirements must be met:

Spec1 : The selected clock must be output; and

Spec2 : glitch noises must be avoided.

Fig. 3.: Example behavior of CLKSEL

Even though the proposed system can be used to ver-
ify that both of these specifications are met, we focus
on Spec1, which suggests an advantage of the proposed
method. To proceed, CLKSEL needs an exchanging
phase, as shown in Figure 3, which means that the output
clock is not immediately decided by sel1. Specification
Spec1 can be restated as the following rules:

Spec1-0 : When clk0 has been selected, then
clk0 will be derived at some point,

Spec1-1 : When clk1 has been selected, then
clk1 will be derived at some point.

(Here, we assume that clk0 and clk1 do not ever stop.)
We can express these specifications in modal logic as:

� (sel1 = 0) ⇒ ♦ � (out = clk0) , (3)

� (sel1 = 1) ⇒ ♦ � (out = clk1) . (4)

Finally, our verification is achieved by deriving specifi-
cation (3) and (4) from the CLKSEL expression (2) and
the axioms. The final of the deduction is as follows:

∀n ∈ N . 0© 1©©n (en0 = 0 & en1 = 1)
⇒ 0© 1©(∀n ∈ N . ©n (out = clk1)) (by the top of (2))
⇒ 0© 1©�(out = clk1) (by AxiomV N1)
⇒ ©m�(out = clk1) (by AxiomV N2)
⇒ ©m♦�(out = clk1) (by AxiomV 2)
⇒ ♦�(out = clk1) (by AxiomV 3.)

IV. Summary
We proposed a deduction system for theorem-proving

verification of multi-clock synchronous circuits, which
does not require any constraint on relations between
clocks. In the future, we hope to implement our method
on a theorem proving language. On which, proofs are rig-
orously verified, and the entire method will become com-
pletely formal.
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