
A Delay Adjustment Method for Asynchronous Circuits with Bundled-data
Implementation Considering a Latency Constraint

Kazumasa Yoshimi Hiroshi Saito

The University of Aizu, Japan The University of Aizu, Japan
m5201119@u-aizu.ac.jp hiroshis@u-aizu.ac.jp

Abstract— In this paper, we propose a delay adjustment
method for asynchronous circuits with bundled-data implemen-
tation considering a latency constraint. In bundled-data imple-
mentation, delay adjustment to satisfy timing constraints affects
circuit area, performance, and design time. Therefore, in this pa-
per, we define places to insert delay elements so that the area of
delay elements is minimized. Then, we modify delay adjustment
for hold and idle constraints for an existing method. In the ex-
periments, we evaluate the number of delay adjustments and the
number of cells used for delay elements for the circuits obtained
by the proposed method. We also evaluate circuit area, execution
time, dynamic power consumption, and energy consumption. The
experimental results show that the proposed method reduces en-
ergy consumption with the reduction of the number of delay ad-
justments and the reduction of the number of cells used for delay
elements.

I. Introduction

Almost all digital VLSIs are synchronous circuits which are
controlled by global clock signals. Power consumption by the
clock tree and synchronization failures by the clock skew will
become remarkable when the semiconductor sub-micron tech-
nology improves more and more.

Asynchronous circuits which control circuit components by
local handshake signals with request and acknowledge signals
do not have problems related to clock signals. However, the de-
sign of asynchronous circuits is more difficult than the design
of synchronous circuits. It is necessary to choose an appropri-
ate delay model and data-encoding method for the design of
asynchronous circuits according to applications. The design
method and timing requirements depend on the choice. Nev-
ertheless, available design automation tools for asynchronous
circuits are restricted.

Asynchronous circuits with bundled-data implementation
represent N-bit signal by N+2 signals [1]. The additional 2 sig-
nals are request and acknowledge signals. Data-path circuits
are the same as the ones used in synchronous circuits. De-
lay elements on request signals guarantee timing to write data
into registers. Therefore, the circuit performance of bundled-
data implementation depends on the delay of the control circuit
which includes delay elements.

It is required to adjust delay elements to satisfy timing con-
straints in asynchronous circuits with bundled-data implemen-
tation. Delay adjustment affects circuit area, performance, and
design time. Therefore, an efficient delay adjustment is re-
quired.

In this paper, we propose a delay adjustment method for
asynchronous circuits with bundled-data implementation con-
sidering a latency constraint. The proposed method is based
on [2] which was proposed by us previously. We developed a
design support tool set for asynchronous circuits with bundled-
data implementation to implement bundled-data implementa-
tions on FPGAs. The design support tool set has constraint
generators, timing verifier, and delay adjustment tool. To re-
duce the area of delay elements and the number of delay ad-
justments, we modify delay adjustments 1) for hold constraints
in which delay elements are added to all input data bits if a
hold violation happens in [2] (register-level adjustment) to ad-
just only violated input data bits (bit-level adjustment) and 2)
for idle constraints in which violated paths are modified inde-
pendently in [2] to adjust violated paths from the first control
module to the last one in the control path.

As a related work, Chakraborty and Dill proposed a
min/max timing analysis for asynchronous finite state ma-
chines in [3]. However, they did not mention delay adjustment.

The rest of this paper is organized as follows. In section
II, we describe a circuit model of asynchronous circuits with
bundled-data implementation used in this paper. In section III,
we describe the proposed method. In section IV, we describe a
design flow which uses the proposed delay adjustment method.
In section V, we describe experimental results using the pro-
posed method. Finally, in section VI, we describe conclusions
and future work.

II. Asynchronous circuits with bundled-data
implementation

A. Circuit Model

Figure 1 represents a circuit model of asynchronous circuits
with bundled-data implementation used in this paper. This cir-
cuit consists of a control circuit and a data-path circuit. The
control circuit consists of control modules ctrli (0 ≤ i ≤ n− 1).
One control module controls one state si in the circuit. A ctrli
consists of a Q-module qi [4], delay elements sdi, bdi, idi, a
glue logic to generate ini signal for qi such as C-element [1],
a latch dli to store the result of the glue logic. The data-path
circuit consists of registers (regk), multiplexers (muxm), func-
tional units (f u), delay elements (hdk, hdinimuxm), and glue log-
ics. The glue logics in the data-path circuit generate register
write signals from acki signals and multiplexer control signals
from ini signals.

Delay elements sdi, bdi, and idi are used to satisfy setup
constraints, branch constraints, and idle constraints described

SASIMI 2016 ProceedingsR3-11

- 219 -

Fig. 1.: Circuit model of asynchronous circuits with bundled-data im-
plementation.

Fig. 2.: Data-path sdpi,l and control path scpi,l for a setup constraint.

in the next sub-section. Delay elements hdk and hdinimuxm are
used to satisfy hold constraints. sdi, idi, hdk, and hdinimuxm con-
sist of a buffer chain while bdi consists of a two-input AND
gate chain as described in Fig.1.

We describe the behaviors of the circuit model. Hereafter,
we represent a rising transition and a falling transition of a sig-
nal sig as sig+ and sig−. The circuit starts operations by the
arrival of start+ from outside to the control circuit. Control
module ctrli starts the control of data-path resources in state
si by the arrival of outi−1+. The output of latch dli controls
multiplexers through glue logics and triggers qi as ini. qi gen-
erates reqi+ when ini+ arrives at qi. reqi+ is changed to acki+
via sdi and acki+ is returned to qi. qi generates reqi−. reqi−
is changed to acki− via sdi and acki− is returned to qi. acki−
is used to control registers to write data through glue logics.
After acki− is returned to qi, qi generates outi+ and transfers
the control to the next control module. The last control module
ctrln−1 generates outn−1− and initializes all control modules by
triggering ini− and outi−. We call the initialization of control
modules as idle phase idle.

B. Timing Constraints

Asynchronous circuits with bundled-data implementation
in this paper must satisfy the following four types of timing
constraints[2].

(a) Type1 (b) Type2

(c) Type3

Fig. 3.: Data-path hdpi,k and control path hcpi,k for hold constraints.
(a) In Type 1, hdpi,k constitutes a self-loop. (b) In Type 2,
hdpi,k is a path to regk through a different register regg. (c) In
Type 3, hdpi,k is a path to dli to regk through muxm.

B.1. Setup Constraints

Input data to registers must be stable before the setup time of
registers. Figure 2 describes paths related to a setup constraint.
sdpi,l represents a data-path from sdi−1 to destination register
regk controlled by ctrli through source register regk−1. scpi,l
represents a control path from sdi−1 to destination register regk
through ctrli. tmaxsdpi,l represents the maximum delay of sdpi,l.
tminscpi,l represents the minimum delay of scpi,l. tsetupi,l repre-
sents the setup time of the destination register. smi,l (smi,l > 0)
represents the margin for tmaxsdpi,l . The setup constraint can be
represented by the following inequality.

tminscpi,l > tmaxsdpi,l + tsetupi,l + smi,l (1)

If the inequality is not satisfied, we need to adjust delay ele-
ment sdi.

B.2. Hold Constraints

Input data to registers must be stable during the hold time af-
ter writing to registers. Figure 3 describes paths related to hold
constraints. hdpi,k represents a data-path from the output of sdi
to the input of regk . hdpi,k can be classified into three types.
Type 1 (Fig.3(a)) constitutes a self-loop, Type 2 (Fig.3(b)) is
a data-path to regk through a different register regg, and Type
3 (Fig.3(c)) is a data-path from dli to regk. tminhdpi,k represents
the minimum delay of hdpi,k. tmaxhcpi,k represents the maxi-
mum delay of hcpi,k. tholdi,k represents the hold time of regk.
hmi,k (hmi,k > 0) represents the margin for tmaxhcpi,k . The hold
constraint can be represented by the following inequality.

tminhdpi,k > tmaxhcpi,k + hmi,k + tholdi,k (2)

If the inequality is not satisfied for Type 1 and Type 2, we
adjust delay element hdk before register regk. On the other

- 220 -

Fig. 4.: Data-path bdpi and con-
trol path bcpi for a
branch constraint.

Fig. 5.: Backward path ibpi and
forward path i f pi for an
idle constraint.

hand, if the inequality is not satisfied for Type 3, we adjust
delay element hdinimuxm between dli to muxm.

B.3. Branch Constraints

A conditional signal from a register for a control branch must
arrive at a branch evaluation logic in ctrli before the control
signal from the previous control module arrives at the branch
evaluation logic. Figure 4 describes paths related to a branch
constraint. bcpi represents a control path from sdi−1 to dli in
ctrli. bdpi represents a data-path from sdi−1 to dli through regk.
tminbcpi represents the minimum delay of bcpi. tmaxbdpi repre-
sents the maximum delay of bdpi. bmi (bmi > 0) represents the
margin for tmaxbdpi . The branch constraint can be represented
by the following inequality.

tminbcpi > tmaxbdpi + bmi (3)

If the branch constraint is not satisfied, we need to adjust delay
element bdi.

B.4. Idle Constraints

Control modules must be returned to the initial state correctly
before the next input data arrives. Figure 5 describes paths
related to an idle constraint. ibpi represents a backward path
from sdn−1 of the last control module of a control path, ctrln−1,
to dli in ctrli through dln−1 of ctrln−1. i f pi represents a forward
path from sdn−1 of ctrln−1 to dli of ctrli through ctrli−1. tmaxi f pi

represents the maximum delay of i f pi. tminidpi represents the
minimum delay of idpi. imi (imi > 0) represents the margin for
tmaxi f pi . The idle constraint can be represented by the following
inequality.

tminibpi > tmaxi f pi + imi (4)

If the idle constraint is not satisfied, we need to adjust delay
element idi.

III. ProposedMethod

In asynchronous circuits with bundled-data implementation,
timing constraints must be guaranteed by delay elements. In-
sertion of delay elements affects not only the quality of synthe-
sized circuits such as area and performance but also the time

of design. Therefore, it is required to minimize the number of
cells used for delay elements and the number of delay adjust-
ments. In this section, first, we define places to insert delay
elements to minimize the area of delay elements. Then, we
describe a method for delay adjustments.

A. Insertion Places of Delay Elements

Insertion places of delay elements except hold constraints
are based on [2]. sdi for a setup constraint is inserted on reqi
signal as shown in Fig.2. bdi for a branch constraint is inserted
on the signal between qi−1 and dli as shown in Fig.4 before the
evaluation of a control branch using a conditional signal. idi
for an idle constraint is inserted on the feedback signal from
the last control module ctrln to dli in ctrli. As all of these
signals are 1-bit signals, we can reduce the area of these delay
elements.

In cases of hold constraints, delay elements hdk and hdinimuxm

are inserted to different places according to the types of hdpi,k.
In cases of Type 1 and Type 2 of hdpi,k, we insert delay ele-
ments hdk before the target register regk as shown in Fig.3(a)
and (b). As the input of regk is usually multiple bits, we insert
hdk at bit-level to reduce the area of hdk. It means that differ-
ent size of hdk will be inserted to input data bits where hold
constraints are violated. In case of Type 3 of hdpi,k, we insert
a delay element hdinimuxm between ini and muxm as shown in
Fig.3(c). As the signal between ini and muxm is 1-bit signal,
we can reduce the area of hdinimuxm . Compared to [2] where
hdk is inserted before regk with not bit-level but register-level,
we can reduce the area of hdk and hdinimuxm in the proposed
method.

B. Approach for Delay Adjustment

Delay adjustment for each timing constraint consists of ad-
dition or removal of cells from the corresponding delay ele-
ment. The addition of cells is required to satisfy timing con-
straints. On the other hand, removal of cells is required to
keep performance. We explain delay adjustments using the
case of setup constraints. Delay adjustments for other timing
constraints can be carried out in the similar way.

Delay adjustments for setup constraints are based on the fol-
lowing inequality.

tmaxsdpi,l + tsetupi,l + smi,l < tminscpi,l

< tmaxsdpi,l + tsetupi,l + smi,l + marginscp (5)

The first condition by the first and second terms of the inequal-
ity represents a setup constraint described in (1). If the sub-
traction of the first term from the second terms is a negative
value, it means a setup violation. In such a case, we add cells
to sdi so that the value of the second term becomes larger than
the value of the first term. However, we restrict the addition of
cells so that the second condition by the second and third terms
is satisfied. This is because the addition of more cells results in
performance degradation. We restrict the addition of cells by a
margin for scp, marginscp.

tminscpi,l may over the third term of the inequality if more
cells are added to sdi. In such a case, we remove cells from sdi
so that the second condition of the inequality is satisfied.

- 221 -

The decision of marginscp affects both delay adjustment
and circuit performance, a smaller value may result in per-
formance improvement. However, it may require more de-
lay adjustments. Therefore, it is important to decide an ap-
propriate value for marginscp. Currently, we decide the value
of marginscp based on the delay of cells used for delay ele-
ments. Moreover, in all setup constraints, we set the same
value to marginscp. For hold, branch, and idle constraints,
we use marginhdp, marginbcp, and marginibp for paths hdpi,k,
bcpi, and ibpi. We assign different values for marginscp,
marginhdp, marginbcp, and marginibp. Assigning different val-
ues for marginscp, marginhdp, marginbcp, and marginibp allows
us to adjust delay elements for each timing constraint consid-
ering the trade-off between the number of delay adjustments
and circuit performance.

Different from [2], we adjust idi from the first control mod-
ule to the last control module in a control path to reduce the
number of delay adjustments. This is because the insertion of
idi−1 which is located to the previous control module ctrli−1 af-
fects to i f pi of the idle constraint for ctrli. By using tmaxi f pi

with added or removed cells in idi−1, we can adjust idi for ctrli
more precisely.

IV. Design Flow

A. Generation of Maximum Delay Constraints

To satisfy a given latency constraint L, we assign path delay
constraints. This is because asynchronous circuits do not have
a global clock signal. Different from [2] where the maximum
delay constraints are assigned to scpi,l and sdpi,l only, we as-
sign the maximum delay constraints for bdpi, i f pi, and ibpi.
As hcpi,k, hdpi,k, and bcpi coincide some of scpi,l or sdpi,l (or
a sub-path of scpi,l or sdpi,l), we ignore to generate the maxi-
mum delay constraints for hcpi,k, hdpi,k, and bcpi.

Path delay constraints are calculated by the delay ratio ri of a
state si and the delay ratio ridle of the idle phase idle for a given
latency constraint L. ri and ridle are calculated as follows.

ri =
tmaxsdpi

Σn−1
i=0

tmaxsdpi + max(tmaxi f pi , . . . , tmaxi f pn−1
)

(6)

ridle =
max(tmaxi f pi , . . . , tmaxi f pn−1

)

Σn−1
i=0

tmaxsdpi + max(tmaxi f pi , . . . , tmaxi f pn−1
)

(7)

tmaxsdpi is the maximum one of tmaxsdpi,l for data-paths sdpi,l
controlled by ctrli. Currently, we assume that tmaxsdpi and
tmaxi f pi are obtained by static timing analysis (STA) for a syn-
thesized circuit without path delay constraints. Instead of STA,
we may use tmaxsdpi for the data-paths sdpi,l of the synchronous
counterpart if we would like to obtain a bundled-data imple-
mentation from the synchronous counterpart with the same la-
tency.

The maximum delay constraint for sdpi,l, cmaxsdpi,l , and the
maximum delay constraints for scpi,l, cmaxscpi,l , are calculated
as follows.

cmaxsdpi,l = L ∗ DRmax ∗ ri (8)

cmaxscpi,l = L ∗CRmax ∗ ri (9)

Fig. 6.: Data-path sdpi,l for a setup constraint consists of two sub
paths. Control path scpi,l consists of five sub paths.

where DRmax and CRmax represent the ratio of the maximum
data-path delay, and the ratio of the maximum control delay
for latency constraint L. DRmax and CRmax must satisfy DRmax
< CRmax. These values must be assigned as inputs with the
latency constraint L. Note that if an sdpi,l is a multi-cycle op-
eration, the sum of cmaxsdpi,l from the beginning state to the last
state of sdpi,l is used.

We decompose sdpi,l into two sub data-paths and scpi,l into
five sub control-paths like Fig.6. This is because in commer-
cial STA tools, the start and end points of paths to be ana-
lyzed are recommended to set to a primary input, primary out-
put, or register (flip-flop or latch). As an sdpi,l includes two
registers (source and destination registers or dli and destina-
tion register), we decompose sdpi,l into sdi−1 to source register
and source register to destination register or sdi−1 to dli and
dli to destination register (1© and 2© in Fig.6). We represent
the ratio of delay from sdpi−1 to source register or sdpi−1 to
dli as rsdi−12src and the ratio of delay from source register to
destination register or dli to destination register as rsrci−12dst.
The maximum delay constraints for each sub data-path are
cmaxsdpi,l ∗ rsd2src and cmaxsdpi,l ∗ rsrc2dst. Similarly, scpi,l is de-
composed into sdi−1 to dli, dli to sdi, sdi to qi, qi to sdi, and

sdi to destination register (1 to 5 in Fig.6). We represent
the ratio of delay from sdi−1 to dli, the ratio of delay from
dli to sdi, the ratio of delay from sdi to qi, the ratio of de-
lay from qi to sdi, and the ratio of delay from sdi to destina-
tion register as rsdi−12dli , rdli2sdi , rsdi2qi , rqi2sdi , and rsdi2dst. The
values of the maximum delay constraints for five sub control-
paths are cmaxscpi,l ∗ rsdi−12dli , cmaxscpi,l ∗ rdli2sdi , cmaxscpi,l ∗ rsdi2qi ,
cmaxscpi,l ∗ rqi2sdi , and cmaxscpi,l ∗ rsdi2dst.

In the similar way, we calculate the maximum path delay
constraints for bdpi, i f pi, and ibpi.

B. Overview

Figure 7 describes a design flow used in this paper. The flow
is based on [2]. The generation of path delay constraints and
the delay adjustment are different from [2]. We use the method
described in Sec. III. The design flow is partitioned into two
processes, initial synthesis, and incremental synthesis.

The inputs of the design flow are 1) a Verilog RTL model
of a bundled-data implementation, 2) technology libraries, and
3) a latency constraint (L) with related parameters. The related
parameters are DRmax, CRmax, smi,l, hmi,k, bmi, imi, marginscp,
marginhdp, marginbcp, and marginibp. Initially, we model delay
element sdi for each control module with a buffer. For other

- 222 -

Fig. 7.: Design flow.

delay elements, we insert dummy modules which have a wire
from the input port to the output port.

In the initial synthesis, we start from the generation of non-
optimization constraints for q-modules qi and delay elements.
This is because optimization for q-modules and delay elements
results in timing violations or hazards. We also generate path
delay analysis commands (i.e., STA commands) for all paths
related to timing constraints. Then, logic synthesis, layout syn-
thesis, and STA are carried out using commercial EDA tools
such as Synopsys Design Compiler. After STA, we modify
STA commands if the start, end, and through points of paths
are renamed during synthesis. Referring to the STA results for
the initial synthesis, we decide all of the parameters such as
DRmax. Note that we assign the values to DRmax and CRmax
to satisfy DRmax < CRmax. In addition, CRmax is decided by
DRmax, smi,l, and marginscp.

In the incremental synthesis, we confirm whether DRmax is
appropriate or not. By comparing with the values of path de-
lay constraints and STA results for corresponding paths, we
may re-generate the maximum path delay constraints chang-
ing the value of DRmax so that the difference between path de-
lay constraints and STA results becomes small. Then, timing
verification is carried out for all timing constraints described
in Sec. II.B. If all timing constraints are satisfied, we finish
the design. Otherwise, we check whether timing constraints
tend to be satisfied by referring a history file for timing ver-
ification. The history file includes timing verification results
for all timing constraints in all synthesis until current timing
verification. If timing constraints tend to be satisfied, delay
adjustment is carried out based on the proposed method. We
generate a script for Engineering Change Order (ECO) com-
mands to add or remove cells to delay elements. Otherwise,
we increase the value of marginscp (this is the case when setup
constraints do not tend to be satisfied). To increase marginscp
restricts removal of cells from delay elements. This results in
to increase the possibility to finish delay adjustment although
the performance of the synthesized circuit is sacrificed.

V. Experiments

We synthesize a differential equation (DIFFEQ) and an El-
liptic Wave Filter (EWF) using the proposed method with a
latency constraint. First, we evaluate the number of delay
adjustments for idle constraints, the number of re-synthesis,
the number of cells used for delay elements hdk and hdinimuxm .
Then, we evaluate the area, execution time, dynamic power
consumption, and energy consumption of the synthesized cir-
cuits. For comparison, we synthesize synchronous circuits and
bundled-data implementations based on [2]. We modify com-
mands for synthesis and STA generated from [2] where FPGAs
are a target to the tools for ASICs. We partially automate tim-
ing verification and delay adjustment using Perl and Excel. We
represent synchronous circuits, bundled-data implementations
based on [2], and bundled-data implementations by the pro-
posed method as ”sync”, ”[2]”, and ”proposed”.

For synthesis, we use Synopsys Design Compiler (I-
2013.12-SP2), Cadence EDI (14.2), Synopsys VCS (I-
2014.03), and Synopsys PrimeTime (H-2013.06-SP3-5) as
logic synthesis, layout synthesis, logic simulation, and STA.
We also use eShuttle 65nm cell libraries.

In order to decide latency constraint, we explore syn-
chronous circuits with the minimum clock cycle time which
satisfies STA and design rule check. The clock cycle time of
both DIFFEQ and EWF is 2,000 ps. We setup latency con-
straints for DIFFEQ and EWF to 8,000 ps (2,000 * 4 states)
and 30,000 ps (2,000 * 15 states).

Next, we decide parameters such as DRmax. We start from
the decision of DRmax. This is because in bundled-data imple-
mentation delay elements except idi are adjusted by data-path
delays. We generate the maximum delay constraints for data-
paths by reducing DRmax 0.05 by 0.05 from 1. After STA for
layout synthesis, we select DRmax where more than 80 % of
the maximum delay constraints between registers is satisfied.
DRmax of DIFFEQ and that of EWF are 0.80 and 0.85. We
assign 200 ps to smi,l, hmi,k, bmi, and imi. We assign 100 ps
to marginscp, marginhdp, marginbcp, and marginibp. We assign
CRmax of DIFFEQ to 1.00 and of EWF to 1.05. These values
are decided from DRmax, smi,l, and marginscp.

Table I represents the number of incremental synthesis, the
number of delay adjustments for idi, and the number of cells
used for hdk and hdinimuxm . The second column (”# of syn”)
represents the number of incremental synthesis to satisfy all
timing constraints. The left value of the third column (adj)
represents the number of delay adjustments for idi. The right
value of the third column (”all for idi”) represents all possi-
bilities of delay adjustments for idi obtained by the product of
of syn and the number of control modules (5 control mod-
ules for DIFFEQ and 15 control modules for EWF). The left
value of the last column (”hdk”) represents the number of cells
used for hdk and hdinimuxm . The right value of the last column
(”total cells”) represents the number of cells used for all delay
elements.

Compared to [2], the number of delay adjustments for idi
and the number of cells for hdk and hdinimuxm are reduced. The
former comes from that delay adjustment for idi is carried out
by the order of the first control module to the last control mod-
ule. The latter comes from that delay adjustment for hdk is
carried out not register-level but bit-level. They also result in
the reduction of the number of incremental synthesis. Delay

- 223 -

Fig. 8.: Results: (a)area, (b)execution time, (c)dynamic power consumption, (d)energy consumption.

TABLE I: The number of incremental synthesis, the number of delay
adjustments for idi, and the number of cells used for hdk
and hdinimuxm .

of syn adj/all for idi hdk/total cells
DIFFEQ

[2] 11 17/55 352/411
proposed 3 1/15 15/80

EWF
[2] 7 34/105 576/814

proposed 3 1/45 69/348

adjustment for some of constraints affects to other constraints
(e.g., insertion of hdk affects setup constraints). Therefore, the
reduction of the number of delay adjustments for idi and the
number of cells for hdk and hdinimuxm results in the reduction of
incremental synthesis.

Figure 8(a), 8(b), 8(c), and 8(d) represent the circuit area,
execution time, dynamic power consumption, and energy con-
sumption of the synthesized circuits after all timing constraints
are satisfied. The area, execution time, dynamic power con-
sumption, and energy consumption come from a report from
EDI, a simulation for a test-bench, a report from PrimeTime,
and the product of the execution time and the dynamic power
consumption. Note that we assign the density of floorplanning
to 70 % in DIFFEQ and 50 % in EWF which are decided by
whether the cell location violations happen or not when we
start from 70 %.

In the area, compared to ”sync”, 7.0 % is reduced in DIF-
FEQ. Compared to ”[2]”, 4.7 % is reduced in EWF. Control
circuit in ”[2]” and ”proposed” represents the area of the con-
trol circuit with control modules and delay elements sdi, bdi,
and idi. Delay elements hdk and hdinimuxm are included in Data-
path circuit.

In execution time, compared to ”sync”, 7.5 % is increased in
DIFFEQ and 23.3 % is increased in EWF. Compared to ”[2],
1.9 % is reduced in DIFFEQ and 12.1 % is increased in EWF.
The reason why the execution time by ”proposed” is the worst
in EWF is that CRmax is set to 1.05 because of margins for smi,l
and marginscp. CRmax larger than 1 means that the maximum
delay constraints over a given latency constraint L.

In dynamic power consumption, compared to ”sync”, 18.2
% is reduced in DIFFEQ and 26.9 % is reduced in EWF. The
reduction mainly comes from the reduction of clock network
and register due to asynchronous circuits. Compared to ”[2]”,
12.3 % is reduced in DIFFEQ and 15.0 % is reduced in EWF.
Dynamic power consumption from combinational is reduced.
This is because operation delays of ”proposed” become longer
than those of ”[2]”.

Finally, in energy consumption, compared to ”sync”, 11.8

% is reduced in DIFFEQ and 11.0 % is reduced in EWF. Com-
pared to ”[2]”, 13.7 % is reduced in DIFFEQ and 4.0 % is re-
duced in EWF. The experimental results show that ”proposed”
reduces energy consumption compared to ”[2]” with the re-
duction of delay adjustments and the reduction of cells used
for delay elements.

VI. Conclusions

In this paper, we proposed a delay adjustment method for
asynchronous circuits with bundled-data implementation. The
proposed method is based on an existing method. However,
insertion of delay elements to satisfy hold constraints and de-
lay adjustment for idle constraints are modified. In the experi-
ments, we confirmed that the proposed method reduces energy
consumption compared to the existing method with the reduc-
tion of delay adjustments and the reduction of cells used for
delay elements.

In our future work, we are going to extend the proposed
method considering dependencies among timing constraints to
reduce the number of delay adjustments more. In addition, we
are going to extend the proposed method to deal with pipelined
circuits.

Acknowledgements

This work is supported by VLSI Design and Education Cen-
ter(VDEC), The University of Tokyo with the collaboration
with Synopsys Corporation and eShuttle. This work is also
supported by JSPS Kakashi 15K00080.

References

[1] J. Sparso and S. Furber, ”Principles of asynchronous circuit de-
sign: a systems perspective”, Springer, 2001.

[2] K. Takizawa, S. Hosaka, H. Saito, ”A Design Support Tool Set
for Asynchronous Circuits with Bundled-data Implementation on
FPGAs”, Proc. FPL, pp. 1–4, 2014.

[3] S. Chakraborty, D. I. Dill, K. Y. Yun, ”Min-max timing analysis
and an application to asynchronous circuits”, Proceedings of the
IEEE, Vol:87, Issue:2, pp.332–346, 1999.

[4] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T. P. Fang,

”QModules: Internally Clocked Delay Insensitive Modules”,

IEEE Transaction of Computer, vol. C-37, no. 9, pp. 1005–1018,

1988.

- 224 -

