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Abstract -  In statistical methods, such as statistical static 
timing analysis, Gaussian mixture model (GMM) is a useful tool 
for representing a non-Gaussian distribution and handling 
correlation easily. In order to repeat various statistical 
operations such as summation and maximum for GMMs 
efficiently, the number of components should be restricted 
around two. In this paper, we propose a method for reducing the 
number of components of a given GMM to two (2-GMM) such 
that the mean and the variance of the 2-GMM are equal to those 
of original GMM and the normalized integral square error of 
2-GMM PDF is minimized. In order to demonstrate the 
performance of the proposed methods, we show some 
experimental results. 
 

I. Introduction 

Due to the progress of nanometer process technologies, 
variability of circuit parameters has been increased and 
various statistical approaches to electronic design have been 
proposed[1]. Among them, the statistical static timing 
analysis has been studied intensively in the beginning of this 
century[2], and algorithms using Gaussian mixture model 
(GMM) to represent distribution have been proposed[3,4]. 
Since the probability density function (PDF) of GMM is a 
probability weighted sum of Gaussian PDFs (each of which 
is called a component), GMM can represent a non-Gaussian 
distribution and treat correlation easily.  

Since GMM has such remarkable features, it is used in 
various fields, such as lifetime analysis of a battery pack[5], 
target tracking in acoustics[6], and so on. But, in order to use 
GMM efficiently, we need a good algorithm to reduce the 
number of components, since if we repeat statistical 
operations for GMMs, then the number of components may 
increase exponentially. For example, for a given two GMMs 
each of which has m components (m-GMM), the sum and the 
maximum are represented by an m2-GMM and a 2m2-GMM, 
respectively[4]. Because, the joint PDF of the two GMMs 
may have m2 components, and each of the components 
produces a distribution (a component) of the sum and two 
components of the maximum. Hence, if we add n 2-GMMs, 
the sum may contain 2n components, unless the number of 
components is reduced. 

So far, several methods[6-12] for reducing components 
have been proposed, which are called Gaussian mixture 
reduction. All of them exclusive of [9] repeat merging of two 
components selected by a certain measure corresponding to a 
distance between two components. In [11], performance 

comparisons of methods in [6], [7], and [8] are described, and 
the method in [8], which uses a distance based on K-L 
discrimination, is ranked as the best method from both 
viewpoints of accuracy and efficiency. The method in [9] 
finds a GMM with reduced number of components by 
increasing number of components from Gaussian by splitting 
a component. The method in [10] modifies the distribution of 
the merged component. Hence, the mean and the variance of 
GMM with the reduced number of components obtained by 
[9] or [10] may differ from those of the original GMM. The 
method in [12] uses weighted K-L divergence as a distance, 
and claims that weighted K-L divergence is more suitable 
than K-L divergence. 

In this paper, we propose a new method of reducing the 
number of components of a given m-GMM to two[4,13]. The 
method finds a 2-GMM such that the mean and the variance 
of the 2-GMM are equal to those of m-GMM and the 
normalized integral square error of 2-GMM PDF is 
minimized. The method combines the methods in [4] and [8] 
by utilizing their advantages effectively so as to obtain better 
performance. 

We also show some experimental results to evaluate the 
performance of the proposed method. Since the methods in 
[9] and [10] do not satisfy the condition for the mean and the 
variance of 2-GMM to be the same as those of a given 
m-GMM, we do not use them in the comparison. In [13], we 
showed that the method in [13] could find better 2-GMMs 
than the methods in [12], and hence we do not use it in the 
comparisons, either. Moreover, since we found by our 
experiments that the method in [8] is better than the method 
in [13], we incorporate the method in [8] into the proposed 
method, and do not use the method in [13] in comparison. 
Thus, we compare the proposed method with [4] and [8]. 

The rest of the paper is organized as follows. In Sections II 
and III, we introduce Gaussian mixture models and briefly 
explain the methods in [4] and [8], respectively. In Section IV, 
we describe the proposed method, and in Section V, we show 
some experimental results. Finally, in Section VI, we give 
conclusions.  
 

II. Gaussian Mixture Model 

Let D be a random variable (RV) whose probability 
density function (PDF) fm(D) is denoted by a weighted sum 
of m Gaussian distributions such that 
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where � 	
�
�� � �, and �(�) is the PDF of the standard 
Gaussian distribution N(0,1), 

���� � ���� ���� �� � � !. (2) 

Then, the distribution of RV D is said to be represented by 
m-GMM (Gaussian mixture model consisting of m Gaussian 
distributions). Each Gaussian distribution N(�i,�i

2) (1�i�m) 
is called the i-th component of m-GMM, and probability Pi is 
called the mixture proportion of the i-th component. 
Henceforth, if the distribution of RV D is represented by an 
m-GMM, then we say that D is an m-GMM, or denote simply 
m-GMM D. 

The mean E[D], the 2nd moment E[D2], and the 3rd 
moment "#�$% of an m-GMM RV D are calculated by the 
following equations, respectively, "#�% � � 	
�"
#�%�
�� � � 	
�&
�
�� , (3) "#��% � � 	
�"
#��%�
�� � � 	
��&
� ' (
���
�� , (4) "#�$% � � 	
�"
#�$%�
�� � � 	
��&
$ ' &
 � (
���
�� . (5) 
Hence, the variance V[D] and the skewness )#�% of the 
m-GMM � are obtained as follows: *#�% � "#��% � "#�%�. (6) )#�% � "#�$% *#�%$+ . (7) 
In the following, "
#�% � &
, "
#��% � &
� ' (
�, and *
#�% � (
� denote the mean, the 2nd moment, and the variance of 
the i-th component of D, respectively. 

Let Y ~N(�Y,�Y
2) be an RV such that the correlation 

coefficient between Y and the i-th component of D is �i, and 
the joint PDF (JPDF) of D and Y is the following: ,��- .� � � 	
� �
��
/ ��� �����
� - 0��/
/ 1 �
��
�� , (8) 

where �	(x,y:�) is the standard Gaussian JPDF of two RVs x 
and y with correlation coefficient �: 

����- 21�� � ����3��� ���� �� � ������454 ������ � !. (9) 

Then, the covariance between D and Y can be obtained by the 
following equation,  6#�- .% � � 	
 � (
�(7��
�
�� � � 	
 � 6
#�- .%�
�� , (10) 

where Ci[D,Y] = �i��Y��i is the covariance of the i-th 
component of D and Y. 

In this paper, we assume that m-GMM D varies depending 
on n+1 factors denoted by n+1 explanatory RVs xD and rg 
(1�g�n), such that all of them are N(
,�) and independent 
each other. Among them, xD is the local factor proper to D, 
and rg (1�g�n) is a common factor used for RVs other than D. 
Moreover, we assume that the distribution of each component 
of D is represented by a linear combination of xD and rg 
(1�g�n). Namely, we assume that Di representing the i-th 
component of D is denoted by  �
 � &
 ' 89-
#�%��: ' � 8;-
#�%�<;�� =;, (11) 

where 89-
#�% � 6#�
- �:%  and 8;-
#�% � 6>�
- =;?  are 
sensitivities of �
 to �: and =;, respectively. This equation 

means that fluctuations caused by the factors are small 
enough to ignore higher order terms[1]. Since any two of xD 
and rg (1�g�n) are independent each other, the variance V[Di] 
= Vi[D] can be obtained by *
#�% � 89-
#�%� ' � 8;-
#�%�<;�� . (12) 
Note here that RV Di is introduced for representing the 
distribution of the i-th component of D and does not have any 
specific meaning. 

In this paper, we consider a problem to approximate a 
given m-GMM D (m > 2) by a 2-GMM M such that the PDF 
is given by  ���@� � � 	AB�B�� � �
CD � � �E��CD
CD �, (13) 
and the first and second moments match, that is, E[M] = E[D] 
and E[M2] = E[D2]. Moreover, in order to evaluate the 
approximation, we use NISE (Normalized Integral Square 
Error) FA defined by  

FA � G HI ����IJ���K LM�NONG I  ���M�NON 5G IJ ���M�NON . (14) 

In the case of GMM, this value is calculated by  FA � P  5PJJ���P JP  5PJJ , (15) 
where Q��, Q��, and Q�� are the following equations[11],  Q�� � � 	AB � 	AR � �3
CD 5
CS � � T �CD��CS3
CD 5
CS UB-R�V�-�W ,  

Q�� � � � 	AB � 	
 � �3
CD 5
� � � T �CD���3
CD 5
� U
�V�-X-�WB�V�-�WLL ,  

Q�� � � 	
 � 	Y � �
Z
� 5
[ � �\ ����[

Z
� 5
[ ]
-Y�V�-X-�W . 

Note here that if two PDFs ����� and ����� are the same, 
then FA � ^, and if two PDFs do not have overlap, then FA � �. Moreover, note that NISE is different from the total 
absolute PDF difference G _����� � �����_L`�a�a  used in [4]. 
Hence, the optimum approximation with respect to NISE is 
not always optimum with respect to the total absolute PDF 
difference. However, we use NISE for evaluation in this 
paper, since it is easily calculated and seems to be used 
commonly in the field of GMM reduction[9-11]. 
 

III. Previous Algorithms 

The method in [4] fits two lines with one joint to the 
shape of CDF curve of m-GMM D, so as to find a 2-GMM 
M whose CDF is close to that of m-GMM D. Then, by 
using the value DJ of the joint, it partitions the set U = { i | � b c b d } of component numbers into three disjoint 
subsets U1 = { c�e | �i < DJ }, U2 = { c�e | �i > DJ }, 
and U3 = { c�e | �i = DJ }, and determine 	AB, &AB, and (AB (k=1,2) by the following equations:  

	A� � � 	

�f� ' �� � � 	

�f$ - 	A� � � � 	A�, (16) 

	AB � &AB � � 	
 � &

�fB ' �� � � 	
 � &

�f$ ,   (17) 	AB � �(AB� ' &AB�� � � 	
 � �(
� ' &
��
�fB   
 '�� � � 	
 � �(
� ' &
��
�f$ .   (18) 

Namely, the k-th component of M is composed from 
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    (a) Shape-I        (b) Shape-II 

Fig.1 – PDFs of 8-GMM for which method-Cdf cannot find 
an appropriate 2-GMM. 

 

       
    (a) Shape-III        (b) Shape-IV 

Fig.2 – PDFs of 8-GMM for which method-Mergd cannot find 
an appropriate 2-GMM. 

components in Uk and a half of each component in U3. 
Therefore, the method in [4], which we call the algorithm 
“Method-Cdf” in the following, solves our problem by 
finding a partition of U with small NISE. 

From Eqs.(16) through (18), we can see that if U3 is 
nonempty or both U1 and U2 are nonempty, then we can 
generate a 2-GMM. Since the number of partitions dividing 
U into two non-empty subsets is g��� � �, and since the 
number of ways to select h elements from U for U3 is 6R� , 
the total number of partitions which generate a 2-GMM is g��� � � ' � 6R����R�� � g��R��. (19) 
Henceforth, we call a brute force algorithm “Method-Opt,” 
which checks all such partitions and selects the optimum 
partition with the minimum NISE. We use Method-Opt to 
evaluate solutions obtained by algorithms. 

Although Method-Cdf is efficient, it cannot find an 
optimum 2-GMM in the case where the distribution of D is 
composed of more than two major parts, since the algorithm 
tries to approximate the distribution by two parts[4]. In Fig.1, 
two PDFs of such distributions are shown. Hence, we 
incorporate a technique used in Gaussian mixture reduction 
into Method-CDF in order to improve Method-Cdf. 

The commonly used methods in Gaussian mixture 
reduction repeat merging of components[8,12,13], which 
selects two nearest components with the use of a distance 
between two components, and merges them first. The K-L 
discrimination[8] hij�k�_k�� of PDF k�  from PDF k�  is 
used as such a distance, and is defined by  hij�k�_k�� � G k���� � ilkm ;n���; ��� j�a�a   (20) 

If each PDF k
 (i=1,2) is a Gaussian o�&
- (
��, then it is 
calculated by  

hij�k�_k�� � �� � p
n 5��n�� � 
  � �q. (21) 
Since hij�k�_k�� r hij�k�_k��, hij�k�_k�� cannot be used 
directly as a distance between k�  and k� . Hence, K-L 
divergence (or K-L distance) is used as a distance. The K-L 
divergence jBs�c- t� between the i-th and j-th components is 
defined by  jBs�c- t� � hijHk
_kYK ' hijHkY_k
K.   (22) 
If the i-th and j-th components are merged, then the 
mixture proportion Pij, the mean �ij, and the variance �ij

2 
of the merged component are determined by moment 
matching similarly to Eqs.(16) through (18). 

Since K-L divergence jBs�c- t� does not take the mixture 

proportion into consideration, the method in [12] used 
weighted K-L divergence, which is defined by jBsu�c- t� � hijH	
�k
_	
�kYK ' hijH	Y�kY_	Y�k
K. (23) 
This value is also calculated easily if each PDF is Gaussian. 
However, the mixture proportion is not sufficient to represent 
the shape of distribution of each component. Hence, we 
proposed a method in [13] which takes the distribution shape 
of each component into account, and we showed that it is 
superior to the method in [12]. However, since we found that 
the method in [8] showed better performance than the method 
in [13], we use the method in [8] in our proposed algorithm. 

The method in [8] defines the distance Lm(i,j) between 
the i-th and j-th components with the use of the merged 
distribution, that is, the distance Lm(i,j) is defined by  v��c- t� � 	
 � hijHk
_k
YK ' 	Y � hijHkY_k
YK.  (24) 
where k
Y  is the PDF of the distribution obtained by 
merging the i-th and j-th components (k
 and kY). If each k
 (i=1,2) is a Gaussian o�&
- (
��, then it is calculated by  v��c- t� � �� �H	
Y�ilkm(
Y� � 	
�ilkm(
� � 	Y�ilkm(Y�K  (25) 
where mixture proportion 	
Y  and variance (
Y�  are 
calculated by similar equations to Eqs.(16) through (18). We 
call the algorithm using this distance to select two 
components for merging “Method-Mergd.” 
 

IV. Proposed Algorithm 

As shown in [13], the method in [13] using Gaussian 
mixture reduction is not always superior to Method-Cdf, and 
needs longer CPU time than Method-Cdf. Similarly, 
Method-Mergd has the same characteristics. For example, it 
cannot find a better 2-GMM than Method-Cdf for the 
8-GMMs shown in Fig.2. Therefore, we combine Method- 
Cdf and Method-Mergd so as to take advantages of both 
methods. Before describing the algorithm, we introduce an 
algorithm to check whether or not the distribution of a given 
m-GMM is similar to the shape of Fig.1(a), which we denote 
by <PDF-Check>. 

<PDF-Check> 
1
:  Find the component � b c b d, whose probability 

density value at the mean &c (we call it vp value and 
denote it by w�
) is maximum, and let &dx�, (dx�, and w��y9 be the mean, the standard deviation, and the vp 
value of the component, respectively. 

2
:  Check if there exists a component i such that &
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satisfies &c z &dx� � (dx�L or &dx� ' (dx� z &c , and w�
  satisfies w�
 { |}B � w��y9 , where |}B  is the 
threshold for the vp value and we set |}B � �~� in the 
experiments in Section V. 

3
:  If there exists such a component i, then the shape of 
distribution of a given m-GMM is regarded as a shape 
different from the one shown in Fig.1(a), and finish the 
algorithm. 

4
:  Otherwise, put the component whose vp value w�
 
satisfies w�
 b |}B � w��y9 into U1, and put remaining 
components into U2. 

Now, we describe the proposed algorithm denoted by 
<2-GMM approximation> as follows: 

<2-GMM Approximation> 
1
:  Conduct <PDF-Check>, and if it produced U1 and U2, 

then generate 2-GMM by using them, and terminate the 
algorithm. Otherwise go to 2
.  

2
:  By using Method-Cdf, generate a 2-GMM, and 
compute NISE �ALwith the use of Eq.(15). If �A is not 
greater than threshold T�, then terminate the algorithm. 
Otherwise, discard this 2-GMM, and go to 3
.  

3
:  By using Method-Mergd, generate a 2-GMM. 

Since we have no strict algorithm to determine T�, we use 
T� = 0.01 which is around one third of the maximum NISE 
��}�Lobtained from 2-GMMs generated by Method-Opt for 
four hundreds 8-GMMs used in the experiment in [4]. This 
value ��}� indicates the maximum of inevitable NISEs in 
the 2-GMM approximation obtained by a partition of U into 
U1, U2, and U3. 

As shown in Eq.(11), we assume that the distribution of 
each component is represented by a linear combination of 
local RV and n common RVs. Hence, the distribution of each 
component of 2-GMM M must be represented by such a 
linear combination in order to repeat statistical operations for 
GMMs. Namely, the RV @B representing the distribution of 
the k-th component of @ must be represented by  @B � &AB ' 89-B#@%��A ' � 8;-B#@%�<;�� =;. (26) 
To do so, we must determine the sensitivities 89-B#@% �6#@B- �A% and 8;-B#@% � 6>@B- =;?. 

If @B is represented by Eq.(26), then the variance *#@B% 
must satisfy Eq.(12). However, *#@B% � (AB�  is already 
determined by Eq.(18) so as to match the moments of � and @. Hence, sensitivities must satisfy  *#@B% � 89-B#@%� ' � 8;-B#@%�<;�� � (AB�, (27) 
from which we have the following inequalities for k = 1,2,  � 8;-B#@%�<;�� b (AB�. (28) 

Moreover, since the covariance values 6
>�- =;? � 8k-c#�% 
(1�i�m, 1�g�n) of m-GMM D are given, we would like to 
match covariance values for 1�g�n as follows: � 	AB�8;-B#@%�B�� � 6>�- =;? � � 	
�8;-
#�%�
�� . (29) 

However, it is not always possible to satisfy both Eqs.(28) 
and (29). A necessary and sufficient condition for sensitivities 

8;-B#@% to satisfy both Eqs.(28) and (29) is to satisfy Eq.(30) 
for k = 1,2, and Eq.(31): H� 6>�- =;?<;�� K� ' �� �(AB� � � 6>�- =;?�<;�� � � ^,  (30) 

� 6>�- =;?<;�� b 	A� � 3�)6� ' 	A� � 3�)6�,  (31) 
where DSCk is the left hand side of Eq.(30). If this condition 
is not satisfied, then we cannot find sensitivities satisfying 
both Eqs.(29) and (30). If it is impossible, we change value of 6>�- =;? to 6���- =;� so as to satisfy Eq.(29). Note here that 
since we keep the values (AB�  (k=1,2), the distribution 
shape of @ does not change, and so does not NISE of @. 

Since it is not easy to find an appropriate value 6���- =;� 
for each =; , we use a sufficient value 6���- =;�  by 
multiplying modification factor � as shown in the following.  

<Calculation of Sensitivities> 
1
:  Compute the following modification factor �:  

    � � �c� �LZ 
Cn � �>�-��? � - Z 
C  � �>�-��? � L�.  (32) 

2
:  For each =; , if � z � , set 6���- =;� � � � 6>�- =;? , 
otherwise, set 6���- =;� � 6>�- =;?. 

3
:  For k = 1 and 2, compute the upper limit evB � � of 8;-B#@% by  

    evB � Z 
CD � ����-��� � .  (33) 

4
:  For each =;, compute the target value |�k�; of the 
ratio 8;-�#@% 6>@- =;?+  of the covariance of the 1st 
component of M to the total covariance by  

    |�k�; � �>��n�-��?�>�-��? , (34) 

where �f�$ is the RV of distribution generated from 
the components of � contained in U1 and a half of 
each component in U3. 

5
:  If 	A� � |�k�; b � � 	A� � ev�, then set weight factor ��; � � � 	A� � ev�; if 	A� � ev� z 	A� � |�k�;, then 
set ��; � 	A� � ev� ; otherwise (that is, if � � 	A� �ev� b 	A� � |�k�; b 	A� � ev�), then set ��; � 	A� �|�k�;. 

6
:  For each =;, determine sensitivities by the following 
equation: 

    �LL 8;-�#@% � u���Cn � 6���- =;�8;-�#@% � ��u���C � 6���- =;�.  (35) 

7
:  For k = 1 and 2, determine sensitivities of local RV by 
the following equation: 

    89-B#@% � (AB� � � 8;-B#@%�<;�� .  (36) 

 
V. Experimental Results 

In order to evaluate the performance of the proposed 
algorithm consisting of <2-GMM Approximation>, 
<PDF-Check>, and <Calculation of Sensitivities>, we 
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TABLE 2:  Parameters of DB. 
PB1 0.3 0.5 0.7 
�B1 �g�� ���� �^�� 
�B1 2.0 1.5 1.0 0.5 
b 0.6 0.8 1.0 1.2 1.4 1.6 

aB1,  aB2 0.1 0.5 1.0 2.0 10.0 

TABLE 3:  NISE FA 2-GMM M. 
 Cdf Mergd proposed Opt 

Average FA��^$ 16.2 9.52 9.20 6.03 
Maximum FA 0.271 0.146 0.146 0.083 

Nbad [%] 3.80 0.357 0.357 0 
Ngood [%] 31.7 41.5 37.4 --- 

TABLE 1:  Parameters of DA. 
 DA1 DA2 

PAj PA1 = 0.25, 0.5, 0.75 	�� � � � 	�� 
�Aj &�� � ���� &�g � � � (�� � &�� � � � (�g 
�Aj (�� � �g (�g � ��^- � �g 
sg 8;#���% � � 8;#���% � 3(�gg �x�� ' ��+  
sx 89#���% � � 89#���% � x� � 8;#���% 

 
Fig.3 – Six types of PDF shape of DA. 

generated 8-GMM DM = Max[DA,DB] from 2-GMM DA and 
DB such that  ��Y � &�t ' 89>��Y? � �� ' 8;>��Y? � =, (37) 

��� � &�� ' 89#��R% � �� ' 8;#��R% � =, (38) 

where t- � � V�-gW. The 8-GMM is generated by the method 
in [4], and each component of the 8-GMM corresponds to a 
part of a component of JPDF of DA and DB contained in the 
area of �� � �� or �� z ��. 

The parameters of DA are shown in TABLE 1, where the 
parameters of the 1st component exclusive of the mixture 
proportion are fixed. By setting �A2 to the value shown in 
the table, DA distributes around 0. In order to generate 
various distribution shapes, we used 3 values as the mixture 
proportion PA1 and 2 values as the standard deviation �A2 of 
the 2nd component, which are shown in the table. Hence, we 
have 6 different distributions of DA, as shown in Fig.3. 

We introduced the ratio aA of sensitivities of the 2nd 
components, whose value does not affect the shape of 
distribution, but change the correlation between DA and DB. 
We used the following 5 values as aA, and hence we have 
totally 30 different distributions of DA:  

aA =  0.1,  0.5,  1.0,  2.0,  10.0  (39) 

Since DA distributes around 0, we set E[DB] = 0 by setting &�g to  &�g � &�� � 	�� �	�� � ��+ . (40) 

Moreover, in order to generate various distributions for DB, 
we introduced ratio � of standard deviations of the 1st and 
the 2nd components, and ratio aBh (h = 1,2) of sensitivities of 
the h-th component. Then, we have  

� � (��(�g �  �#�¡n%�3x�� 5� �#�¡ %�3x�g 5�. (41) 

Therefore, by setting the values of the mixture proportion PB1, 
the mean &��  and the standard deviation (��  of the 1st 
component, and the ratios b and aBh (h = 1,2), we can 
determine the distribution of DB. The values that we used for 
these parameters are shown in TABLE 2. Therefore, we have 
totally 5,400 different distributions of DB, and the correlation 
coefficient between DA and DB varies between 0.00173 and 
0.668.   

From these DA and DB, we generated totally 162,000 
distributions of 8-GMM DM, and applied Method-Cdf, 
Method-Mergd, Method-Opt, and the proposed method. 
TABLE 3 shows the average and the maximum of NISE FA 
of 2-GMM M and the percentage Nbad and Ngood of cases 
when FA { ^��  and FA b ��� � F�}� , respectively, in 
162,000 total cases, where F�}� is NISE of 2-GMM obtained 
by Method-Opt. Since the maximum of NISE obtained by 
Method-Opt is smaller than 0.1, Nbad can be regarded as the 
rate of bad approximation. On the other hand, Ngood is 
regarded as the rate of good approximation.��

From the table, we can see that the worst-case error 
(Maximum �M) of the proposed method is improved by 
46.1% from Method-Cdf, and the average error of �M by 
43.2%. Moreover, Nbad decreased by 3.44 points and Ngood 
increased by 5.8 points. Hence, we can see that the proposed 
method could cover the defect of Method-Cdf by introducing 
Gaussian reduction technique in Method-Mergd. 

 The improvements of the proposed method from 
Method-Mergd is not large, and Ngood decreased by 4.1 points 
from Method-Mergd. However, the average error of �M is 
improved by 3.36%, which means that the proposed method 
can take advantage of Method-Cdf. Namely, as shown in Fig. 
2, Method-Cdf can find a better 2-GMM than Method-Mergd, 
and the proposed method uses this advantage. However, in 
16,330 cases (10.1%), the proposed algorithm changed good 
2-GMMs obtained by Method-Cdf by worse 2-GMMs by 
conducting Method-Mergd. This means that the way to select 
Method-Mergd in the proposed method is not sufficient and 
there still exists room for improvement in the proposed 
method.  
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TABLE 4 shows the CPU times to find a 2-GMM by 
Method-Cdf, Method-Mergd, and the proposed method. In 
the table, columns Path 1
, 2
, and 3
 show the CPU times for 
a 2-GMM to be obtained at Step 1
, 2
, and 3
 in <2-GMM 
Approximation>, respectively, and column average shows 
average CPU time of 162,000 cases. Although the CPU times 
needed for a single 2-GMM approximation of these methods 
are small, if the approximation is repeated many times in 
applications such as the statistical static timing analysis of 
LSI, then the difference of the times becomes important. The 
machine used for experiments has Intel Xeon processor 
E3-1270 v2 with 3.5GHz clock frequency and 16GB 
memory.  

TABLE 5 shows the percentage of each Path in which 
2-GMMs are generated. Moreover, it shows the percentages 
of each Path with respect to the distribution type of DA shown 
in Fig.3. Since the ratio of Path 1
 is 17.4%, the average CPU 
time of the proposed method is reduced from Method-Mergd 
by 21.2%. 
 

VI. Conclusions 

In this paper, we proposed a new algorithm for 
approximating a given m-GMM by a 2-GMM with small 
NISE (normalized integral square error) of PDF. The 
algorithm combines three methods so as to minimize NISE 
and CPU time, and keeps the shape of distribution (the 
variance of each component) for not changing NISE when 
determining sensitivities. From the experiments, we found 
that the proposed method can take the advantages of the 
previous algorithm; Method-Cdf and Method-Mergd, and 
shows better performance from the viewpoints of NISE and 
CPU time.  

In the proposed algorithm, Method-Mergd is selected for 
producing better approximation by using threshold T� and 
NISE of 2-GMM PDF obtained by Method-Cdf. However, 
this selection method is not perfect, and hence our future 
work is to find a better selection method, which invokes 
Method-Mergd only when it finds better solution than 
Method-Cdf, and overhead of CPU time for selection is less 
than the CPU time of Method-Cdf. 

Moreover, the proposed algorithm does not change 
variance of each component when determining sensitivities, 
so as to keep NISE of 2-GMM. However, there exist 
applications in which such objective function may be 
inappropriate. For example, in the lifetime analysis of a 

battery pack, minimum operation may be repeated many 
times[5], and in such a case, minimizing NISE may be 
inappropriate. Therefore, devising an algorithm suitable to 
such an application and considering an appropriate objective 
function are another future work. 
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TABLE 4:  CPU times [�s] 

Cdf Mergd 
proposed 

Path 1
 Path 2
 Path 3
 average 
1.10 3.30 0.115 2.18 5.50 2.60 

 
TABLE 5:  Percentage of Path with respect to type of DA [%]. 

Type I II III IV V VI total 
Path 1
 4.60 7.03 0.795 0.059 3.60 1.29 17.4 
Path 2
 9.27 6.53 12.4 10.2 9.60 10.3 58.2 
Path 3
 2.80 3.11 3.50 6.42 3.47 5.09 24.4 
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