
A Data Effect Aware Microcomponent-Based Estimation Approach
For Accurate System-Level Memory Device Power Evaluation

1,2Chi-Kang Chen 1Hsin-I Wu 1Chi-Ting Hsiao 1Ren-Song Tsay
 rc@itri.org.tw { hiwu.dery , lineagenoya , rstsay }@gmail.com

1Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan
2Industrial Technology Research Institute, Hsinchu, Taiwan

Abstract - As memory is a major power dominant, we propose
a highly efficient microcomponent-based approach with
data-aware refinement for accurate system-level power
estimation. The proposed method pre-calibrates the power
consumption pattern of each identified microcomponent for
power simulation. To achieve high accuracy, the data variation
effect is considered and a simple interpolation technique is
proposed to further boost accuracy. The proposed approach
produces accurate results of less than 2% error rate in average
for system-level power analysis.

I. INTRODUCTION

Energy efficiency has become a key concern in a typical

computing system. According to recent reports [3, 14], the
associated memory system devours 25% of total power and is
expected to consume even more in the near future [3]. To perform
memory system power optimization at an early design stage,
designers strongly desire a fast and accurate memory system power
estimation method for evaluation of target architectures. However,
many recent research works, such as those of Vogelsang [7] and
Chandrasekar [13], have raised issues regarding the fact that
existing system-level memory power models are mostly based on
the worst-case hardware measurement value, which may mislead
designers in making decisions. To close the gap, we adapt the
microcomponent-based power analysis idea, which has been
proven effective for CPU designs [10], and propose a fast and
accurate system-level memory system power estimation approach.

Traditional memory power models take each memory request
instruction as a basic unit for power calculations and assume that
each instruction consumes a fixed power value [1, 2, 4, 5]. In
general, the traditional request-based power models work well for
SRAM because the circuit structure of SRAM is simpler and the
access operations are predictable. Therefore, SRAM power
consumption behavior is relatively manageable. In contrast, DRAM
access behavior is more complicated. Before a memory request
instruction is sent into DRAM dice, it is first sent to the memory
controller and translated into a sequence of internal DRAM
commands that drive the actual DRAM circuit. The DRAM
controller schedules these commands according to the DRAM’s
state (such as row hit/miss). For example, a load word (lw)
instruction issued from CPU is translated by the DRAM controller
into a sequence of three internal commands, ACTIVE (ACT),
READ (RD), and PRECHARGE (PRE), and each command drives
specific memory circuit components. The ACT command moves
data out through the row decoder, data array and sense amplifier.
The RD command puts data onto the bus from row buffer through
I/O gating. The PRE command re-initializes sense amplifier for the
next incoming command. Additionally, a DRAM memory

hierarchy often consists of complicated channel, rank, bank, row
and column structures. Moreover, the internal command execution
time is in fact variable rather than fixed. To this issue, we find that
independent of architecture difference, the DRAM
microcomponents involved are basically the same. Therefore, with
pre-characterized microcomponents, we can easily compose
various memory architectures and estimate system-level memory
power usage quickly and accurately based on precise internal
command timing information derived from the given memory
system scheduling policy of the corresponding architecture.

For the rest of this paper, we will focus our study on DRAM
power analysis and hence, for clarity’s sake, will use “command”
to indicate an internal command and use “instruction” for an
external command. To further understand and analyze the power
consumption of DRAM circuits, we first show a sample power
waveform in Figure 1. The DRAM circuit power consumption
includes two parts, dynamic and static power. When each internal
command is issued, input signals begin to propagate through the
corresponding activated circuit and then hold at a certain stable
state until the next internal command arrives. Accordingly, we
further divide the active command interval into two parts:
processing time and hold time. The command processing time, or
signal propagation time, is a fixed value and can be computed
through timing analysis. During the command processing time,
circuit switching consumes dynamic power in addition to
continuously consuming static leakage power. During the hold time,
the circuit is in a stable state after the completion of command
processing and consumes only static power. In the past, the most
widely adopted DRAM power model is the Micron-like model [4],
which assumes that each command type consumes a fixed energy.
However, in practice almost all modern memory designs adopt
concurrent interleaving memory access schemes with varying hold
times and result in varying energy consumption in practice that can
be far from the Micron-like model. To improve accuracy, IPMDS
[6] assumes a constant power level for each command but
computes actual hold time and derives more accurate energy
consumption values. However, this model does not differentiate
between power consumption values of command processing time

RDACTI

Tprocessing
time

g hold
time

Fig. 1. An example of electric current waveform for a sequence of
ACT and RD commands

SASIMI 2016 ProceedingsR4-3

- 291 -

and hold time. Hence, the estimation can be unsatisfactory for
practical use. To improve accuracy, we made an important
discovery: since most memory circuit microcomponents are
engaged in passing data, the dynamic switching power is roughly
proportional to the number of input bits whose values are changed.
Thus, we have created a more accurate dynamic power model that
considers data content, something never previously done before. To
verify the accuracy of the proposed approach, we test on a few real
memory designs. The experimental results show that our approach
has less than 2% error rate on average, while the traditional
approach has 29%~54% error rate with reference to detailed circuit
simulation results.

II. RELATED WORK

Most existing system-level memory power models estimate total

power consumption by using the average power consumption per
command, known as the per command power consumption value.
The referred power values are from a standard datasheet based on
measurement results. Among these models, the Micron model [4]
has been most widely adopted due to its simplicity. Basically, to
compute the standard energy consumption of each command, it
multiplies the average recorded current through a specified period
with the driving voltage. In order to differentiate the energy
consumption value under specific scenarios, a few Micron-like
models [1, 2, 5] take an input command sequence and multiply this
standard energy consumption value with the command count
number to calculate energy consumption. Essentially, Micron-like
models do not consider hold time variations and hence can be far
from accurate, particularly for advanced memory designs [6].

To fix the above-mentioned issues, IPMDS [6] takes into
account timing information, which is determined by the memory
controller. As opposed to the Micron-like model, IPMDS multiplies
each recorded command power consumption value with the actual
command issuing time interval to get the total energy value, so take
into account the power effect of contention delays. In sum, IPMDS
improves accuracy over the basic Micron-like model by
considering more general timing policy. Nevertheless, both Micron
and IPMDS models use the worst-case value for power calculation,
which can be overly pessimistic in practice. Additionally, the
measurement-based method is generally known to lack detailed
power information regarding when and where power is consumed
[7].

In contrast, other approaches mostly focus on power value
calculation using a transistor model or established circuit floorplan
[7, 8, 9], according to the circuit model provided. These approaches
are not restricted to circuit or gate-level models. For instance,
Vogelsang [7] studies the effect of circuit parameters, such as gate
oxide thickness or wire capacitance, on power value. Chandrasekar
et al. [12, 13] consider the power effect of 3D-stack and process
variations. DArT [15] also model basic circuit units (such as a
memory cell) as components, then construct memory design and
estimate circuit area, power and timing values. While this
component concept seems similar to our approach, we maximize
evaluation efficiency by modeling the component based on
function, rather than structure as DArT does. In general, the above
approaches do provide precise power evaluations but are only
applicable to small scale designs due to their tremendous
computational complexity, making them impractical for
gigabit-scale calculations. We therefore propose a
microcomponent-based approach that precisely identifies the
activated circuit components of each command and accurately
models the dynamic and static power consumption values of each
component in relation to the driving command. In the following,
we elaborate our proposed approach.

III. MICROCOMPONENT-BASED APPROACH

To construct an accurate system-level power estimation method,

we propose a microcomponent-based approach, which partitions
the whole memory circuit into microcomponents according to
DRAM commands. We then use the power model of each
microcomponent to derive detailed power information for the target
design. In Figure 2, we show the flowchart of our proposed
approach, for which we have a preparation phase and a simulation
phase. In the one-time preparation phase, we first run through all
possible commands and identify microcomponents. Then, we
analyze each microcomponent’s power consumption behavior
under different active commands and construct a
microcomponent-command power table.

In the simulation phase, we produce the power waveform and
arrive at the total power consumption value. First, we analyze the
timing behaviors of the input memory requests. The timing
information identifies which command at specific time points. With
the corresponding microcomponents activated by the memory
commands, we construct the final power waveform simply by
sequentially stacking up the power waveform from the
microcomponent power table of each activated microcomponent. In
our approach, a memory technology provider can independently
complete the preparation phase and supply the
microcomponent-command power table for the user’s system-level
evaluations.

A. Microcomponents

The microcomponent method for accurate power evaluation has

been successfully applied to CPU designs [10]. The main
observation is that the same instruction always activates the same
specific circuit components. Similarly, for DRAM operations, the
same command issued from the memory controller also always
activates the same specific circuit components. We exploit this
property and identify microcomponents in the memory circuit for
precise power calculations. A unique benefit of using the
microcomponent model for power analysis is that we can focus on
analyzing the power effect on a limited active region without the
need to consider other un-affected regions. By doing so, we can
greatly reduce estimation errors. Next we will first explain how to
identify microcomponents systematically.

Identify Microcomponents: A microcomponent is defined as the
largest set of circuits used by a group of commands that activates

Timing model

Preparation
Phase

Simulation
Phase

Microcomponent
Power models

Memory Requests

Memory Circuit

Identify
Microcomponents

Characterizing
Microcomponents

Fig. 2. The flowchart of our proposed microcomponent-based approach

Power Waveform &
Total power consumption

- 292 -

this set of circuits during execution. Note that with this definition,
no two microcomponents can be activated by a same set of
commands. Therefore, we shall produce a minimum number of
microcomponents for the target design investigated. In practice, we
apply an iterative refinement procedure to generate the
microcomponents. To start, we first set the whole circuit as a
region and then propagate the control signals of a command and
identify the activated circuit region. Note that this identified region
can overlap with previously identified regions. We then separate
each overlapped region into a new region, which obviously is
activated by multiple commands. The non-overlapped area of each
existing region will also be a separate region. Running through
each command in sequence will thus produce regions each
corresponding to a microcomponent. The above process can be
illustrated using Table 1, which lists the activated DRAM units of
five basic commands and the final identified microcomponents
based on a typical DRAM architecture shown in Figure 3. To
generate the table, we run through the five basic commands,
ACTIVE (ACT), READ (RD), WRITE (WR), PRECHARGE (PRE),
and REFRESH (REF), and list the activated units of each command
in Table I. Following the microcomponent definition, we find that
Row Decoder and Data Array are the largest group of DRAM units
commonly activated by ACT, PRE and REF and hence are grouped
as a microcomponent, uc1. Similarly, Sense Amp is marked as the
microcomponent uc2 as it is the only unit used by every command.
Likewise, I/O gating and Col Decoder are the largest group used by
both RD and WR commands and are marked as microcomponent
uc3. The remaining two components Write Driver and Read Latch
are used by WR and RD respectively and form separated
microcomponents uc4 and uc5.

Microcomponent Power Model: Note that each microcomponent
is activated by at most one command at a time. When a different
command occupies the microcomponent, the circuit will execute a
different function and hence perform at a different power level.
Each microcomponent power model basically follows a same
general pattern, which includes a fixed processing time period Tp
and a variable hold time period Th. In Figure 4, we show an
example of a modeled power current waveform of a
microcomponent, with the blue line indicating the average electric
current value, a sum of both dynamic and static current values.

 When a microcomponent is activated by a command, the input
data start to propagate through the microcomponent during the
processing period Tp. During this period, transistors in the
microcomponent may switch states and consume dynamic power
along with the constant static power consumption. After Tp, all data
signals propagate through the microcomponent and the circuit state
is stabilized, hence consuming only static power, no dynamic
power. Then it turns into the hold time period Th, during which the
microcomponent remains at the same state and consumes only
static power until the next activating command arrives. For each

microcomponent, we can use a detailed circuit analysis tool, such
as SPICE, to compute the current waveform and average value of
these two periods based on the given command and input data. In
practice, the data content can significantly affect the estimated
value. Nevertheless, due to the fact that the memory circuit handles
mostly data pass-through, the variation of power consumption
caused by different input data can be accurately estimated using a
simple model, which we shall elaborate below.

Data Effect: In the past, the data effect is usually ignored in
power modeling mainly because it is complex and hard to quantify.
However, we find that the data content does significantly affect
memory circuit power consumption values. For example, with
extensive SPICE simulations, we observe that the minimum power
consumption is only 14% of the maximum value for the command
WR taking various data content. Therefore, considering data
content change is crucial for accurate power estimation. To this
issue, we propose a simple interpolation approach. We observe that
the memory circuit is mainly for data storage or passing and hence
it is mostly composed of the regular bitline array, with each data bit
value affecting its own bitline independently. Therefore, if the
bitline value is unchanged, the corresponding bitline circuit simply
maintains the same static power level with no dynamic power
consumption, whereas if the bitline changes value, the switching
causes dynamic power consumption and the difference of the final
state results in a different static power level. With this observation,
we simply use the number of data bit value changes to estimate
accurately both the dynamic and static power consumption values.

In doing so, we first analyze two extreme cases of the hold time
for each microcomponent, using the power values ��� and ���,
which have input data bits of all 0’s and all 1’s, respectively. Then,
we change the bits to all 1’s or 0’s, respectively, to compute the
processing power values P0→1 and P1→0. Then, we have the
following linear interpolation formula to compute the processing
power
����	 = (��→���→� + ��→���→� + ��→���→� + ��→���→�) �⁄ ,

Fig. 3. A typical DRAM architecture.

Data Array
Row

Decoder

Sense Amp

I/O Gating

Col Decoder

Read
Latch

Write
Driver

TABLE I
THE ACTIVATED DRAM UNITS OF EACH COMMAND

AND THE MICROCOMPONENTS IDENTIFIED.

Fig. 4. An illustration of a modeled microcomponent power pattern.

Tp

Processing period Hold time period

I

T

: average current

Th

- 293 -

 and the following formula to compute hold time power

 ����
 = (��
��� + ��

���) �⁄ ,
where n is the total number of data bits, n1 is the number of data

bits whose final value is 1, n0 is the number of data bits whose final
value is 0, and ��→� is the number of data bits whose value
changes from x to y.

Verify Data-aware Power Correction: Our experiments reveal
an interesting fact, that the active data value to be processed has
more impact on power than the previous data value. This is because
a DRAM circuit charges bitlines following the active data value. In
contrast, previous data values affect only initial logic switching but
has nearly no effect on later bitline charging, which actually
consumes most power. To verify our proposed data-aware
interpolation power correction model described previously, we
perform tests on a 32-bit wide data array circuit. We first use
SPICE to generate the corresponding power consumption golden
references by charging various numbers of bitlines from low to
high value. Then, we apply our proposed interpolation approach for
power consumption estimation. The comparison results are
summarized in Table II, which shows that our interpolation method
produces results of less than 1% error rate. To verify whether the
interpolation method is sensitive to bitline position, we conduct
another test by charging the same number of bitlines on a few sets
of randomly selected bitlines. The results show that they all
produce the same power value. This suggests that our interpolation
approach is insensitive to bitline position and requires only
knowing the number of bitlines of value 0 or 1. Now, using the
microcomponents and their associated power information, we can
accurately calculate the total power consumption once we know
precisely when the processing period and the hold time period take
place.

B. Memory Timing Model

Using the accurate power models of each microcomponent

generated based on the methods discussed above, to calculate
energy consumption value precisely we simply need to know the
processing time and hold time of each command on the
microcomponent. In fact, the memory controller controls the
scheduling of all commands according to the statuses of the
channel, bank and bus. Therefore, to precisely compute the timing
information, we simply monitor the command sequence at the
output of the memory controller. Once we know the target bank of
a command, we can easily derive the command timing interval.

After a microcomponent is triggered by a command, the timing
model requires two parameters: processing time Tp and hold time
Th, as shown in Figure 5. The processing time is the minimum time

that the microcomponent to complete the data propagation. Note
that we have setup time included in the processing time to simplify
the model. The hold time is a varying time period during which
signals are stabilized while waiting for next activating command.
Processing time is a constant and determined by the circuit
characteristics of the microcomponent. After identifying the exact
processing time and hold time of each command, we simply look
up the corresponding processing time power and hold time power
from the microcomponent power table and compose the final total
power waveform.

Note that the same microcomponents are used regardless of the
bank-channel architecture; except that write driver and read latch
microcomponents are shared by all banks while other
microcomponents all have bank-specific copies. We illustrate our
approach in Figure 6 with the memory bank configuration and the
corresponding bank-specific and shared microcomponents. First,
we monitor the command bus and derive a precisely timed
command trace, as shown on the top of Figures 6(a) and 6(b).
Figure 6(a) demonstrates how to compute individual bank power.
For example, suppose that Bank 1 executes the command sequence
ACT→RD→PRE. With the command timing information as shown,
we then check how each activated microcomponent contributes to
the final total power waveform. For instance, uc1 is first triggered
by ACT and then re-initialized by PRE, but not affected by the RD
command. For the ACT activating time period, which stops when
PRE is activated, we first have the fixed ACT processing time and

PREREEE
1

ACT WRACT ACT RD RD PRECTTT A
2

RDD R
2

PREEE
2

CTTT
1

RD P
1

CTTT A
3

WRR
3

Command Bus:

= Total power waveform

RD

Shared uComp
Power waveform:

uc5 (RD)

uc4 (WR)

RD

WR

:

+

(b). The power waveforms of shared microcomponents.

Shared power

Shared

Fig. 6. An illustration of generating the total power waveform using
command issuing time and microcomponent power waveform.

Bank power

Microcomponents:

TABLE II
COMPARING THE ACCURACY OF INTERPOLATION

APPROACH WITH GOLDEN REFERENCE

bit changes 0 1 12 22 31 32

Error Rate 0% 0.9% 1% 1% 1% 0%

PREREE
1

ACTBank

ACT
1

WRACTT ACT RD RD PRECTTT A
2

RDD R
2

PREEE
2

CTT 1
D P

1
CTTTTT ACAA

3 3

RD PREk 1

Command Bus:

ACT

RDACT

RD

PRE

PRE

EE

EE

Bank uComp
Power waveform:

ACuc1 (ACT, PRE, …)

ACTuc2 (ACT, RD, PRE, …)

uc3 (RD, WR)

(a). The power waveform of individual bank. i indicates bank i.

Bank
Microcomponents:

hold timeprocessing time

Microcomponent (ACT)

ACT

Fig. 5. An illustration of the microcomponent timing model.

PRE

- 294 -

leave the rest as the hold time. We put the ACT-uc1 processing
time power and hold time power into the corresponding time
periods just computed. Afterward we use a similar process to match
the PRE power pattern to the right time point corresponding to uc1.

In contrast, uc2 is sequentially activated by ACT, RD and then
PRE. Therefore, the hold time period for ACT on uc2 is clearly
shorter than that of ACT on uc1. In a similar procedure as used
above for uc1, we produce the power waveform of uc2.

After power waveforms of all three bank-specific
microcomponents are generated, we simply sum up all power
values and produce the final total bank power waveform of Bank 1,
shown on the bottom. Similarly, we can generate the power
waveform for other banks and use them to produce the total bank
power.

For the two shared microcomponents shown in Figure 6(b), we
monitor the command bus and find RD and WR commands that
activate shared microcomponents. For example, uc5 takes RD of
bank 1 and RD of bank 2 as its input command and produces the
corresponding power waveform. As with bank power, we sum up
all the shared microcomponent power to derive the shared power.
With bank and shared power, we can eventually generate the total
memory system power waveform.

IV. EXPERIMENTAL RESULTS

To demonstrate our proposed approach, we adopt the

DRAMsim2 [1], which include both DRAM controller and dice
model, as the base system-level DRAM simulator. The
cycle-accurate DRAMSim2 takes a stream of memory instructions
(read/write) as the input. The DRAM command scheduler within
the controller generates timing-annotated DRAM commands (ACT,
RD, WR, PRE, and REF) according to given timing constraint.
These timing-annotated DRAM commands are then used to
calculate the power waveform, as illustrated in Figure 6, and
simultaneously to compute the IPMDS waveform.

In fact, the DRAMSim2 can also perform execution-driven
simulation. In this mode, it integrates with a full system simulator
[16-17] and receives memory instructions dynamically from the
full system simulator at run time instead of from a trace file.
However, since full system simulations are excessively time
consuming; this method is adopted less often in practice. Before we
proceed to system-level simulation, we first verify the model
accuracy.

A. Verify Accuracy

To validate the accuracy of our power model, we simulate a 2

MB 16 Banks 250 MHz eDRAM design and use the results of
SPICE simulation as golden references. We first identify five
microcomponents from the eDRAM design and then generate the
power pattern of each microcomponent and command based on
SPICE simulations. At the same time, we also use the SPICE
results of the whole circuit and generate the equivalent Micron and
IPMDS power models. The proposed microcomponent approach
maintains an average error rate of less than 2%, which is far more
accurate than the MICRON and IPMDS models in reference to the
SPICE golden results, as shown in Table III. In the case of the
ACT_NOP_PRE command sequence, which occurs during the
idling phase, both Micron and IPMDS produce results with a 5~7%
error rate as there is no hold time variation in accesses of short
transaction length.

With WR_8, we have a typical access command sequence,
which includes a WR and a burst RD sequence of length 8, to
represent cases with command switching, data processing and long
transaction intervals. In this scenario, due to the insensitivity of

processing time and hold time differentiation, the Micro-like and
IPMDS approaches results in significant accuracy loss. In general,
for command sequences with longer transaction lengths and for
more complex command schedules such as those found in WR_8,
both the Micron and IPMDS models show significant error rate
increases, with the Micron-like models producing more errors. As
discussed previously, our approach outperforms existing methods
mainly because we use microcomponents for analysis and ignore
uninvolved regions. Additionally, our data interpolation approach,
which take into account the power effect of data content differences,
also contributes to our more accurate results.

B. Trace-Driven Memory Simulation

To test our approach, we use the memory access trace file

“k6_aoe_02_short.trc” that comes with the DRAMSim2 project as
the input for our experiment. The target 2MB 16 Banks 250 MHz
eDRAM design was simulated using the trace file to generate the
timing-annotated command trace file. Both the proposed approach
and the IPMDS approach were then simulated using the
timing-annotated command trace file to generate power waveforms
for comparison. Figure 7 shows a partial waveform segment from
the system power simulations generated from both our approach
(Microcomponent) and IPMDS. The proposed
microcomponent-based power waveform is realistic and contains
detailed and accurate timing information compared to the
traditional approach. For instance, examine the segment from time
clock cycle 251 to cycle 281 encircled in red, in which the DRAM
circuit repeatedly issues RD commands and reading from different
banks. In this scenario, the corresponding power waveform shows a
periodical waveform, in orange, which reflects the repetitive
executions of RD commands. In contrast, IPMDS cannot show the

Fig. 7. Comparing the system simulated power waveform of IPMDS and
our approach.

TABLE III
COMPARING THE ACCURACY OF OUR METHOD WITH MICRON

AND IPMDS BASED ON THE TOTAL ENERGY VALUE.

Command Sequence ACT_NOP_PRE WR_8

Transaction length short long

Process data No effect All 0 All 1

Initial data All 0 All 1 All 0 All 1 All 0 All 1

Er
ro

r r
at

e

Micron 7.02% 5.76% 29.50% 31.28% 54.78% 53.49%

IPMDS 7.02% 5.76% 11.92% 13.45% 33.77% 32.65%

Microcomponent 1.11% 2.07% 1.55% 2.38% 2.32% 2.35%

- 295 -

rise and fall of power variations.

C. Architecture Evaluation

To demonstrate the effectiveness of our approach for

architecture evaluation, we take a DRAM design with a total size of
64MB and use our tool to evaluate a few different architectures.
Note that in general, the microcomponents are the same even
though the architectures differ. However, if needed, we check if
there are new microcomponents. For our test, we use different
channel/bank numbers (1 channel*16 banks, 2c_8b, 4c_4b, 8c_2b,
16c_1b) and run the trace simulation described in Sec. 4.2, then
compare power, energy consumption and performance. In Figure 8,
we show the total memory energy consumption and data access
performance, normalized to 1c_16b. We can observe that the
performance increases when the channel number increases. This is
mainly due to the fact that more channels facilitate higher potential
for parallelism. Although the power increases sharply as the
channel number increases, energy consumption actually decreases
due to the shorter execution time. To maximize energy efficiency
and performance, 16c_1b is obviously the best choice among these
five cases, but if we consider peak power, then 4c_4b or 8c_2b may
be a better choice.

V. CONCLUSION

In this paper, we have proposed an accurate

microcomponent-based system-level power estimation method. We
leverage the fact that each memory command is active only in
certain microcomponent regions in order to achieve highly accurate
power simulations. Our approach maintains high accuracy even
under arbitrary scheduling policies and can easily produce detailed
power waveforms for examination. The reusability of
microcomponents is ideal for early stage power evaluation of
systems with new design elements or architectures. In particular,
with the advent of 3D-IC, our proposed approach is useful for
detailed yet fast and accurate power analysis. Additionally, a
unique advantage is that vendors can independently provide
microcomponent power models for users without fear of revealing
technology details.

ACKNOWLEDGEMENTS

This research was supported by MOST TAIWAN project

102-2221-E-007-141-MY3. We also thank Prof. Meng-Fan Chang
and his lab at National Tsing-Hua University, Hsin-Chu, Taiwan,
for providing memory test circuits for experiments.

REFERENCES

[1] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle

accurate memory system simulator,“ Computer Architecture Letters,
2011.

[2] Q. Deng, L. Ramos, R. Bianchini, D. Meisner and T. Wenisch,
"Active low-power modes for main memory with MemScale," in
IEEE Micro, vol. 32, no. 3, pp. 60-69, May-June 2012.

[3] L. Minas and B. Ellison, “The problem of power consumption in
servers”, Intel Corporation. Dr. Dobb's, 2009.

[4] Micron Technology Inc., “TN-41-01: Calculating memory system
power for DDR3”, Technical Report, 2007.

[5] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna and C. Le,
"RAPL: Memory power estimation and capping", Low-Power
Electronics and Design (ISLPED), 2010 ACM/IEEE International
Symposium on, Austin, TX, USA, 2010, pp. 189-194.

[6] K. Chandrasekar, B. Akesson and K. Goossens, “Improved power
modeling of DDR SDRAMs”, Digital System Design (DSD), 2011
14th Euromicro Conference on. IEEE, 2011. p. 99-108.

[7] T. Vogelsang, “Understanding the energy consumption of dynamic
random access memories”, Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2010. p. 363-374.

[8] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, CACTI 6.0:
A tool to model large caches, HP Laboratories, 2009.

[9] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman and N. P.
Jouppi, "A comprehensive memory modeling tool and its application
to the design and analysis of future memory hierarchies", Computer
Architecture, 2008. ISCA '08. 35th International Symposium on,
Beijing, 2008, pp. 51-62.

[10] Z.-C. Huang, C.-K. Chen and R.-S. Tsay, "AROMA: A highly
accurate microcomponent-based approach for embedded processor
power analysis", The 20th Asia and South Pacific Design Automation
Conference, Chiba, 2015, pp. 761-766.

[11] S. M. Min, H. J. and S. Parameswaran, “Xdra: Exploration and
optimization of last-level cache for energy reduction in ddr drams”,
Proceedings of the 50th Annual Design Automation Conference. ACM,
2013. p. 22.

[12] K. Chandrasekar, C. Weis, B. Akesson, N.t Wehn and K. Goossens,
“System and circuit level power modeling of energy-efficient
3D-stacked wide I/O DRAMs”, Proceedings of the Conference on
Design, Automation and Test in Europe. EDA Consortium, 2013. p.
236-241.

[13] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn and K. Goossens,
“Towards variation-aware system-level power estimation of DRAMs:
an empirical approach”, Proceedings of the 50th Annual Design
Automation Conference. ACM, 2013. p. 23.

[14] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich and R. S. Schreiber,
“Future scaling of processor-memory interfaces”, High Performance
Computing Networking, Storage and Analysis, Proceedings of the
Conference on., 2009. p. 1-12

[15] H.-C. Shih, et al., “DArT: A component-based DRAM area, power,
and timing modeling tool”, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on (Volume:33, Issue: 9),
2014. p. 1356-136

[16] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A full system
simulator for multicore x86 CPUs”, Design Automation Conference
(DAC), 48th ACM/EDAC/IEEE, New York, NY, 2011, pp.
1050-1055.

[17] N. Binkert, et al., “The gem5 simulator”, SIGARCH Computer
Architecture News 39, 2 (August 2011), 1-7.

Fig. 8. Comparing power, energy and performance of various architectures.

- 296 -

