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Abstract - As memory is a major power dominant, we propose 
a highly efficient microcomponent-based approach with 
data-aware refinement for accurate system-level power 
estimation. The proposed method pre-calibrates the power 
consumption pattern of each identified microcomponent for 
power simulation. To achieve high accuracy, the data variation 
effect is considered and a simple interpolation technique is 
proposed to further boost accuracy. The proposed approach 
produces accurate results of less than 2% error rate in average 
for system-level power analysis. 
 

I. INTRODUCTION 
 
Energy efficiency has become a key concern in a typical 

computing system. According to recent reports [3, 14], the 
associated memory system devours 25% of total power and is 
expected to consume even more in the near future [3]. To perform 
memory system power optimization at an early design stage, 
designers strongly desire a fast and accurate memory system power 
estimation method for evaluation of target architectures. However, 
many recent research works, such as those of Vogelsang [7] and 
Chandrasekar [13], have raised issues regarding the fact that 
existing system-level memory power models are mostly based on 
the worst-case hardware measurement value, which may mislead 
designers in making decisions. To close the gap, we adapt the 
microcomponent-based power analysis idea, which has been 
proven effective for CPU designs [10], and propose a fast and 
accurate system-level memory system power estimation approach. 

Traditional memory power models take each memory request 
instruction as a basic unit for power calculations and assume that 
each instruction consumes a fixed power value [1, 2, 4, 5]. In 
general, the traditional request-based power models work well for 
SRAM because the circuit structure of SRAM is simpler and the 
access operations are predictable. Therefore, SRAM power 
consumption behavior is relatively manageable. In contrast, DRAM 
access behavior is more complicated. Before a memory request 
instruction is sent into DRAM dice, it is first sent to the memory 
controller and translated into a sequence of internal DRAM 
commands that drive the actual DRAM circuit. The DRAM 
controller schedules these commands according to the DRAM’s 
state (such as row hit/miss). For example, a load word (lw) 
instruction issued from CPU is translated by the DRAM controller 
into a sequence of three internal commands, ACTIVE (ACT), 
READ (RD), and PRECHARGE (PRE), and each command drives 
specific memory circuit components. The ACT command moves 
data out through the row decoder, data array and sense amplifier. 
The RD command puts data onto the bus from row buffer through 
I/O gating. The PRE command re-initializes sense amplifier for the 
next incoming command. Additionally, a DRAM memory 

hierarchy often consists of complicated channel, rank, bank, row 
and column structures. Moreover, the internal command execution 
time is in fact variable rather than fixed. To this issue, we find that 
independent of architecture difference, the DRAM 
microcomponents involved are basically the same. Therefore, with 
pre-characterized microcomponents, we can easily compose 
various memory architectures and estimate system-level memory 
power usage quickly and accurately based on precise internal 
command timing information derived from the given memory 
system scheduling policy of the corresponding architecture. 

For the rest of this paper, we will focus our study on DRAM 
power analysis and hence, for clarity’s sake, will use “command” 
to indicate an internal command and use “instruction” for an 
external command. To further understand and analyze the power 
consumption of DRAM circuits, we first show a sample power 
waveform in Figure 1. The DRAM circuit power consumption 
includes two parts, dynamic and static power. When each internal 
command is issued, input signals begin to propagate through the 
corresponding activated circuit and then hold at a certain stable 
state until the next internal command arrives. Accordingly, we 
further divide the active command interval into two parts: 
processing time and hold time. The command processing time, or 
signal propagation time, is a fixed value and can be computed 
through timing analysis. During the command processing time,
circuit switching consumes dynamic power in addition to 
continuously consuming static leakage power. During the hold time, 
the circuit is in a stable state after the completion of command 
processing and consumes only static power. In the past, the most 
widely adopted DRAM power model is the Micron-like model [4], 
which assumes that each command type consumes a fixed energy. 
However, in practice almost all modern memory designs adopt 
concurrent interleaving memory access schemes with varying hold 
times and result in varying energy consumption in practice that can 
be far from the Micron-like model. To improve accuracy, IPMDS 
[6] assumes a constant power level for each command but 
computes actual hold time and derives more accurate energy 
consumption values. However, this model does not differentiate 
between power consumption values of command processing time 

RDACTI

Tprocessing 
time

g hold 
time

Fig. 1. An example of electric current waveform for a sequence of 
ACT and RD commands 
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and hold time. Hence, the estimation can be unsatisfactory for 
practical use. To improve accuracy, we made an important 
discovery: since most memory circuit microcomponents are 
engaged in passing data, the dynamic switching power is roughly 
proportional to the number of input bits whose values are changed. 
Thus, we have created a more accurate dynamic power model that 
considers data content, something never previously done before. To 
verify the accuracy of the proposed approach, we test on a few real 
memory designs. The experimental results show that our approach 
has less than 2% error rate on average, while the traditional 
approach has 29%~54% error rate with reference to detailed circuit 
simulation results.  

 
II. RELATED WORK 

 
Most existing system-level memory power models estimate total 

power consumption by using the average power consumption per 
command, known as the per command power consumption value. 
The referred power values are from a standard datasheet based on 
measurement results. Among these models, the Micron model [4] 
has been most widely adopted due to its simplicity. Basically, to 
compute the standard energy consumption of each command, it 
multiplies the average recorded current through a specified period 
with the driving voltage. In order to differentiate the energy 
consumption value under specific scenarios, a few Micron-like 
models [1, 2, 5] take an input command sequence and multiply this 
standard energy consumption value with the command count 
number to calculate energy consumption. Essentially, Micron-like 
models do not consider hold time variations and hence can be far 
from accurate, particularly for advanced memory designs [6]. 

To fix the above-mentioned issues, IPMDS [6] takes into 
account timing information, which is determined by the memory 
controller. As opposed to the Micron-like model, IPMDS multiplies 
each recorded command power consumption value with the actual 
command issuing time interval to get the total energy value, so take 
into account the power effect of contention delays. In sum, IPMDS 
improves accuracy over the basic Micron-like model by 
considering more general timing policy. Nevertheless, both Micron 
and IPMDS models use the worst-case value for power calculation, 
which can be overly pessimistic in practice. Additionally, the 
measurement-based method is generally known to lack detailed 
power information regarding when and where power is consumed 
[7]. 

In contrast, other approaches mostly focus on power value 
calculation using a transistor model or established circuit floorplan 
[7, 8, 9], according to the circuit model provided. These approaches 
are not restricted to circuit or gate-level models. For instance, 
Vogelsang [7] studies the effect of circuit parameters, such as gate 
oxide thickness or wire capacitance, on power value. Chandrasekar 
et al. [12, 13] consider the power effect of 3D-stack and process 
variations. DArT [15] also model basic circuit units (such as a 
memory cell) as components, then construct memory design and 
estimate circuit area, power and timing values. While this 
component concept seems similar to our approach, we maximize 
evaluation efficiency by modeling the component based on 
function, rather than structure as DArT does. In general, the above 
approaches do provide precise power evaluations but are only 
applicable to small scale designs due to their tremendous 
computational complexity, making them impractical for 
gigabit-scale calculations. We therefore propose a 
microcomponent-based approach that precisely identifies the 
activated circuit components of each command and accurately 
models the dynamic and static power consumption values of each 
component in relation to the driving command. In the following, 
we elaborate our proposed approach. 

 
III. MICROCOMPONENT-BASED APPROACH 

 
To construct an accurate system-level power estimation method, 

we propose a microcomponent-based approach, which partitions 
the whole memory circuit into microcomponents according to 
DRAM commands. We then use the power model of each 
microcomponent to derive detailed power information for the target 
design. In Figure 2, we show the flowchart of our proposed 
approach, for which we have a preparation phase and a simulation 
phase. In the one-time preparation phase, we first run through all 
possible commands and identify microcomponents. Then, we 
analyze each microcomponent’s power consumption behavior 
under different active commands and construct a 
microcomponent-command power table.  

In the simulation phase, we produce the power waveform and 
arrive at the total power consumption value. First, we analyze the 
timing behaviors of the input memory requests. The timing 
information identifies which command at specific time points. With 
the corresponding microcomponents activated by the memory 
commands, we construct the final power waveform simply by 
sequentially stacking up the power waveform from the 
microcomponent power table of each activated microcomponent. In 
our approach, a memory technology provider can independently 
complete the preparation phase and supply the 
microcomponent-command power table for the user’s system-level 
evaluations.  

 
A. Microcomponents 

 
The microcomponent method for accurate power evaluation has 

been successfully applied to CPU designs [10]. The main 
observation is that the same instruction always activates the same 
specific circuit components. Similarly, for DRAM operations, the 
same command issued from the memory controller also always 
activates the same specific circuit components. We exploit this 
property and identify microcomponents in the memory circuit for
precise power calculations. A unique benefit of using the 
microcomponent model for power analysis is that we can focus on 
analyzing the power effect on a limited active region without the 
need to consider other un-affected regions. By doing so, we can 
greatly reduce estimation errors. Next we will first explain how to 
identify microcomponents systematically. 

Identify Microcomponents: A microcomponent is defined as the 
largest set of circuits used by a group of commands that activates 
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Fig. 2. The flowchart of our proposed microcomponent-based approach 
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this set of circuits during execution. Note that with this definition, 
no two microcomponents can be activated by a same set of 
commands. Therefore, we shall produce a minimum number of 
microcomponents for the target design investigated. In practice, we 
apply an iterative refinement procedure to generate the 
microcomponents. To start, we first set the whole circuit as a 
region and then propagate the control signals of a command and 
identify the activated circuit region. Note that this identified region 
can overlap with previously identified regions. We then separate 
each overlapped region into a new region, which obviously is 
activated by multiple commands. The non-overlapped area of each 
existing region will also be a separate region. Running through 
each command in sequence will thus produce regions each 
corresponding to a microcomponent. The above process can be 
illustrated using Table 1, which lists the activated DRAM units of 
five basic commands and the final identified microcomponents 
based on a typical DRAM architecture shown in Figure 3. To 
generate the table, we run through the five basic commands, 
ACTIVE (ACT), READ (RD), WRITE (WR), PRECHARGE (PRE), 
and REFRESH (REF), and list the activated units of each command 
in Table I. Following the microcomponent definition, we find that 
Row Decoder and Data Array are the largest group of DRAM units 
commonly activated by ACT, PRE and REF and hence are grouped 
as a microcomponent, uc1. Similarly, Sense Amp is marked as the 
microcomponent uc2 as it is the only unit used by every command. 
Likewise, I/O gating and Col Decoder are the largest group used by 
both RD and WR commands and are marked as microcomponent 
uc3. The remaining two components Write Driver and Read Latch 
are used by WR and RD respectively and form separated 
microcomponents uc4 and uc5. 

Microcomponent Power Model: Note that each microcomponent 
is activated by at most one command at a time. When a different 
command occupies the microcomponent, the circuit will execute a 
different function and hence perform at a different power level. 
Each microcomponent power model basically follows a same 
general pattern, which includes a fixed processing time period Tp 
and a variable hold time period Th. In Figure 4, we show an 
example of a modeled power current waveform of a 
microcomponent, with the blue line indicating the average electric 
current value, a sum of both dynamic and static current values. 

 When a microcomponent is activated by a command, the input 
data start to propagate through the microcomponent during the 
processing period Tp. During this period, transistors in the 
microcomponent may switch states and consume dynamic power 
along with the constant static power consumption. After Tp, all data 
signals propagate through the microcomponent and the circuit state 
is stabilized, hence consuming only static power, no dynamic 
power. Then it turns into the hold time period Th, during which the 
microcomponent remains at the same state and consumes only 
static power until the next activating command arrives. For each 

microcomponent, we can use a detailed circuit analysis tool, such 
as SPICE, to compute the current waveform and average value of 
these two periods based on the given command and input data. In 
practice, the data content can significantly affect the estimated 
value. Nevertheless, due to the fact that the memory circuit handles 
mostly data pass-through, the variation of power consumption 
caused by different input data can be accurately estimated using a 
simple model, which we shall elaborate below. 

Data Effect: In the past, the data effect is usually ignored in 
power modeling mainly because it is complex and hard to quantify. 
However, we find that the data content does significantly affect 
memory circuit power consumption values. For example, with 
extensive SPICE simulations, we observe that the minimum power 
consumption is only 14% of the maximum value for the command 
WR taking various data content. Therefore, considering data 
content change is crucial for accurate power estimation. To this 
issue, we propose a simple interpolation approach. We observe that 
the memory circuit is mainly for data storage or passing and hence 
it is mostly composed of the regular bitline array, with each data bit 
value affecting its own bitline independently. Therefore, if the 
bitline value is unchanged, the corresponding bitline circuit simply 
maintains the same static power level with no dynamic power 
consumption, whereas if the bitline changes value, the switching 
causes dynamic power consumption and the difference of the final 
state results in a different static power level. With this observation, 
we simply use the number of data bit value changes to estimate 
accurately both the dynamic and static power consumption values.  

In doing so, we first analyze two extreme cases of the hold time 
for each microcomponent, using the power values ��� and ���, 
which have input data bits of all 0’s and all 1’s, respectively. Then, 
we change the bits to all 1’s or 0’s, respectively, to compute the 
processing power values P0→1 and P1→0. Then, we have the 
following linear interpolation formula to compute the processing 
power 
����	 = (��→���→� + ��→���→� + ��→���→� + ��→���→�) �⁄ , 

Fig. 3. A typical DRAM architecture. 
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 and the following formula to compute hold time power 

 ����
 = (��
��� + ��

���) �⁄ , 
where n is the total number of data bits, n1 is the number of data 

bits whose final value is 1, n0 is the number of data bits whose final 
value is 0, and ��→� is the number of data bits whose value 
changes from x to y.  

Verify Data-aware Power Correction: Our experiments reveal 
an interesting fact, that the active data value to be processed has 
more impact on power than the previous data value. This is because 
a DRAM circuit charges bitlines following the active data value. In 
contrast, previous data values affect only initial logic switching but 
has nearly no effect on later bitline charging, which actually 
consumes most power. To verify our proposed data-aware 
interpolation power correction model described previously, we 
perform tests on a 32-bit wide data array circuit. We first use 
SPICE to generate the corresponding power consumption golden 
references by charging various numbers of bitlines from low to 
high value. Then, we apply our proposed interpolation approach for 
power consumption estimation. The comparison results are 
summarized in Table II, which shows that our interpolation method 
produces results of less than 1% error rate. To verify whether the 
interpolation method is sensitive to bitline position, we conduct 
another test by charging the same number of bitlines on a few sets 
of randomly selected bitlines. The results show that they all 
produce the same power value. This suggests that our interpolation 
approach is insensitive to bitline position and requires only 
knowing the number of bitlines of value 0 or 1. Now, using the 
microcomponents and their associated power information, we can 
accurately calculate the total power consumption once we know 
precisely when the processing period and the hold time period take 
place. 

 
B. Memory Timing Model 

 
Using the accurate power models of each microcomponent 

generated based on the methods discussed above, to calculate 
energy consumption value precisely we simply need to know the 
processing time and hold time of each command on the 
microcomponent. In fact, the memory controller controls the 
scheduling of all commands according to the statuses of the 
channel, bank and bus. Therefore, to precisely compute the timing 
information, we simply monitor the command sequence at the 
output of the memory controller. Once we know the target bank of 
a command, we can easily derive the command timing interval.  

After a microcomponent is triggered by a command, the timing 
model requires two parameters: processing time Tp and hold time 
Th, as shown in Figure 5. The processing time is the minimum time 

that the microcomponent to complete the data propagation. Note 
that we have setup time included in the processing time to simplify 
the model. The hold time is a varying time period during which 
signals are stabilized while waiting for next activating command. 
Processing time is a constant and determined by the circuit 
characteristics of the microcomponent. After identifying the exact 
processing time and hold time of each command, we simply look 
up the corresponding processing time power and hold time power 
from the microcomponent power table and compose the final total 
power waveform. 

Note that the same microcomponents are used regardless of the 
bank-channel architecture; except that write driver and read latch 
microcomponents are shared by all banks while other 
microcomponents all have bank-specific copies. We illustrate our 
approach in Figure 6 with the memory bank configuration and the 
corresponding bank-specific and shared microcomponents. First, 
we monitor the command bus and derive a precisely timed 
command trace, as shown on the top of Figures 6(a) and 6(b). 
Figure 6(a) demonstrates how to compute individual bank power. 
For example, suppose that Bank 1 executes the command sequence 
ACT→RD→PRE. With the command timing information as shown, 
we then check how each activated microcomponent contributes to 
the final total power waveform. For instance, uc1 is first triggered 
by ACT and then re-initialized by PRE, but not affected by the RD 
command. For the ACT activating time period, which stops when 
PRE is activated, we first have the fixed ACT processing time and 
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leave the rest as the hold time. We put the ACT-uc1 processing 
time power and hold time power into the corresponding time 
periods just computed. Afterward we use a similar process to match 
the PRE power pattern to the right time point corresponding to uc1. 

In contrast, uc2 is sequentially activated by ACT, RD and then 
PRE. Therefore, the hold time period for ACT on uc2 is clearly 
shorter than that of ACT on uc1. In a similar procedure as used 
above for uc1, we produce the power waveform of uc2. 

After power waveforms of all three bank-specific 
microcomponents are generated, we simply sum up all power 
values and produce the final total bank power waveform of Bank 1, 
shown on the bottom. Similarly, we can generate the power 
waveform for other banks and use them to produce the total bank 
power.  

For the two shared microcomponents shown in Figure 6(b), we 
monitor the command bus and find RD and WR commands that 
activate shared microcomponents. For example, uc5 takes RD of 
bank 1 and RD of bank 2 as its input command and produces the 
corresponding power waveform. As with bank power, we sum up 
all the shared microcomponent power to derive the shared power. 
With bank and shared power, we can eventually generate the total 
memory system power waveform. 

 
IV. EXPERIMENTAL RESULTS 

 
To demonstrate our proposed approach, we adopt the 

DRAMsim2 [1], which include both DRAM controller and dice 
model, as the base system-level DRAM simulator. The 
cycle-accurate DRAMSim2 takes a stream of memory instructions 
(read/write) as the input.  The DRAM command scheduler within 
the controller generates timing-annotated DRAM commands (ACT, 
RD, WR, PRE, and REF) according to given timing constraint. 
These timing-annotated DRAM commands are then used to 
calculate the power waveform, as illustrated in Figure 6, and 
simultaneously to compute the IPMDS waveform.  

In fact, the DRAMSim2 can also perform execution-driven 
simulation. In this mode, it integrates with a full system simulator 
[16-17] and receives memory instructions dynamically from the 
full system simulator at run time instead of from a trace file. 
However, since full system simulations are excessively time 
consuming; this method is adopted less often in practice. Before we 
proceed to system-level simulation, we first verify the model 
accuracy. 

 
A. Verify Accuracy 

 
To validate the accuracy of our power model, we simulate a 2 

MB 16 Banks 250 MHz eDRAM design and use the results of 
SPICE simulation as golden references. We first identify five 
microcomponents from the eDRAM design and then generate the 
power pattern of each microcomponent and command based on 
SPICE simulations. At the same time, we also use the SPICE 
results of the whole circuit and generate the equivalent Micron and 
IPMDS power models. The proposed microcomponent approach 
maintains an average error rate of less than 2%, which is far more 
accurate than the MICRON and IPMDS models in reference to the 
SPICE golden results, as shown in Table III. In the case of the 
ACT_NOP_PRE command sequence, which occurs during the 
idling phase, both Micron and IPMDS produce results with a 5~7% 
error rate as there is no hold time variation in accesses of short 
transaction length.  

With WR_8, we have a typical access command sequence, 
which includes a WR and a burst RD sequence of length 8, to 
represent cases with command switching, data processing and long 
transaction intervals. In this scenario, due to the insensitivity of 

processing time and hold time differentiation, the Micro-like and 
IPMDS approaches results in significant accuracy loss. In general, 
for command sequences with longer transaction lengths and for 
more complex command schedules such as those found in WR_8, 
both the Micron and IPMDS models show significant error rate 
increases, with the Micron-like models producing more errors. As 
discussed previously, our approach outperforms existing methods 
mainly because we use microcomponents for analysis and ignore 
uninvolved regions. Additionally, our data interpolation approach, 
which take into account the power effect of data content differences, 
also contributes to our more accurate results. 

 
B. Trace-Driven Memory Simulation 

 
To test our approach, we use the memory access trace file 

“k6_aoe_02_short.trc” that comes with the DRAMSim2 project as 
the input for our experiment. The target 2MB 16 Banks 250 MHz 
eDRAM design was simulated using the trace file to generate the 
timing-annotated command trace file. Both the proposed approach 
and the IPMDS approach were then simulated using the 
timing-annotated command trace file to generate power waveforms 
for comparison. Figure 7 shows a partial waveform segment from 
the system power simulations generated from both our approach 
(Microcomponent) and IPMDS. The proposed 
microcomponent-based power waveform is realistic and contains 
detailed and accurate timing information compared to the 
traditional approach. For instance, examine the segment from time 
clock cycle 251 to cycle 281 encircled in red, in which the DRAM 
circuit repeatedly issues RD commands and reading from different 
banks. In this scenario, the corresponding power waveform shows a 
periodical waveform, in orange, which reflects the repetitive 
executions of RD commands. In contrast, IPMDS cannot show the 

Fig. 7. Comparing the system simulated power waveform of IPMDS and 
our approach. 

TABLE III 
COMPARING THE ACCURACY OF OUR METHOD WITH MICRON 

AND IPMDS BASED ON THE TOTAL ENERGY VALUE. 

Command Sequence ACT_NOP_PRE WR_8 

Transaction length short long 

Process data No effect All 0 All 1 

Initial data All 0 All 1 All 0 All 1 All 0 All 1 

Er
ro

r r
at

e 

Micron 7.02% 5.76% 29.50% 31.28% 54.78% 53.49% 

IPMDS 7.02% 5.76% 11.92% 13.45% 33.77% 32.65% 

Microcomponent 1.11% 2.07% 1.55% 2.38% 2.32% 2.35% 
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rise and fall of power variations. 
 

C. Architecture Evaluation 
 
To demonstrate the effectiveness of our approach for 

architecture evaluation, we take a DRAM design with a total size of 
64MB and use our tool to evaluate a few different architectures. 
Note that in general, the microcomponents are the same even 
though the architectures differ. However, if needed, we check if 
there are new microcomponents. For our test, we use different 
channel/bank numbers (1 channel*16 banks, 2c_8b, 4c_4b, 8c_2b, 
16c_1b) and run the trace simulation described in Sec. 4.2, then 
compare power, energy consumption and performance. In Figure 8, 
we show the total memory energy consumption and data access 
performance, normalized to 1c_16b. We can observe that the 
performance increases when the channel number increases. This is 
mainly due to the fact that more channels facilitate higher potential 
for parallelism. Although the power increases sharply as the 
channel number increases, energy consumption actually decreases 
due to the shorter execution time. To maximize energy efficiency 
and performance, 16c_1b is obviously the best choice among these 
five cases, but if we consider peak power, then 4c_4b or 8c_2b may 
be a better choice.  
 

V. CONCLUSION 
 
In this paper, we have proposed an accurate 

microcomponent-based system-level power estimation method. We 
leverage the fact that each memory command is active only in 
certain microcomponent regions in order to achieve highly accurate 
power simulations. Our approach maintains high accuracy even 
under arbitrary scheduling policies and can easily produce detailed 
power waveforms for examination. The reusability of 
microcomponents is ideal for early stage power evaluation of 
systems with new design elements or architectures. In particular, 
with the advent of 3D-IC, our proposed approach is useful for 
detailed yet fast and accurate power analysis. Additionally, a 
unique advantage is that vendors can independently provide 
microcomponent power models for users without fear of revealing 
technology details. 
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