
Detecting Missed Arithmetic Optimization in C Compilers
by Differential Random Testing

Mitsuyoshi Iwatsuji 1 Atsushi Hashimoto 2 Nagisa Ishiura 1

1 Kwansei Gakuin University, Sanda, Hyogo, Japan
2 Nomura Research Institute, Ltd., Tokyo, Japan

Abstract— This paper presents a method of de-
tecting missed optimization opportunities in C com-
pilers by differential random testing. By compiling
randomly generated test programs by two different
compilers, or different versions of the same compiler,
and comparing the resulting pairs of assembly codes,
lack of optimization is detected. Comparison is based
on the instruction count. An experimental test sys-
tem has successfully detected under-optimization in
the latest versions of GCC and Clang/LLVM.

I. Introduction

Compilers must be highly reliable, for they are infras-
tructure tools for software development. In addition, the
performance of generated codes is also a critical issue.
Thus, compilers must be tested for their performance as
well as for their correctness.

There have been a few attempts to detect performance
bugs. Nullstone [1] is a test suite for C compilers’ opti-
mization consisting of about 6,500 test programs. As it
is a finite set of test cases, it is inevitable that its de-
tection ability is limited. Randprog [2] tries to find in-
valid deletion of memory accesses for volatile variables
by random testing. It detects over-optimization but not
under-optimization. [3] proposed a method of detecting
under-optimization in C compilers by random testing. A
pair of equivalent programs, one is unoptimized and the
other is optimized in the C language level, are compiled
and assembly codes are compared. However, in principle
it can not find lack of stronger optimization than that
performed in the C language level.

To address this issue, this paper presents yet another
method of detecting missed optimization opportunities in
C compilers by differential random testing [4]. Randomly
generated test programs are compiled by different compil-
ers and the resulting codes are compared to detect missed
optimization. A test system based on our method has de-
tected several under-optimization in the latest versions of
GCC and Clang/LLVM.

II. Random testing of C compilers

After validation using test suites, compilers are often
tested by randomly generated programs to detect poten-
tial bugs. Csmith [5] and Orange [6] are examples of suc-
cessful random test systems for C compilers.

In this paper, we employ Orange3 [6] as a random
test generator. Fig. 1 shows an example of a test pro-
gram. It verifies (in lines 14–15) the resulting values of
the arithmetic expressions (in lines 12–13). The expres-

1: #include <stdio.h>
2: #define OK() printf("@OK@\n")
3: #define NG(fmt,val) printf("@NG@ (test="fmt")\n",val)
4: const signed int k8 = 144011145;
5: int main (void) {
6: signed short x1 = 6;
7: static unsigned short x2 = 1U;
8: static signed long x4 = 4542636934L;
9: volatile signed short x7 = -1;

10: signed long t0 = -1261917469307207940L;
11: signed long t1 = -42079927921L;
12: t0 = (x2^(x4+((x7+k8)>>x2)));
13: t1 = ((x4<<(x4/t0))/x1);
14: if (t0 == 4614642507L) {OK();} else {NG("%d", t0);}
15: if (t1 == 757106155L) {OK();} else {NG("%lld", t1);}
16: return 0;
17: }

Fig. 1. Test program generated by Orange3.

compare

test1.c

generate

test2.cequivalent

compile & execute
compiler

result1 result2

(a) Method in [3].

compiler1 compiler2
test.c

generate

compile & execute

compare

compile & execute

result1 result2

(b) Proposed method.

Fig. 2. Approaches for optimization test.

sions are constructed carefully not to yield undefined be-
havior (such as zero division or signed overflow). The size
of the programs can be adjusted to the compiler under
test, which typically ranges from 500 to 10,000 lines.

Once an error is detected, the program must be mini-
mized (reduced to an error reproducing program as small
as possible) for closer investigation. This is achieved by
applying various size reducing program transformations
as long as the error is reproduced. Orange3 has a built-in
minimizer along with the random program generator.

Although the random testing is a powerful tool to de-
tect compilers’ crash or wrong code generation, lack of
optimization is hard to detect by the same method, for
the compiled codes yield the same results even though
intended optimization was not performed.

III. Detecting missed optimization by
differential testing

This paper proposes a random test method to detect
missed compiler optimization by differential testing [4].
While [3] compared the assembly codes generated from a
pair of equivalent C programs (as in Fig. 2 (a)), we com-
pile a randomly generated program (test.c) by two differ-
ent compilers, or different versions of the same compiler,
and compare the resulting two assembly codes (test1.s
and test2.s), as illustrated in Fig. 2 (b). The test pro-
gram that yields a significant difference on the assembly

SASIMI 2016 ProceedingsR-1

- 2 -

TABLE I
Experimental results.

compiler (target) option time [h] #test #diff
GCC-5.0.0 (x86 64) -O3
Clang-3.7.0 (x86 64) -O3

24 ∗1 62,672 593

GCC-6.0.0 (x86 64) -O3
GCC-5.3.0 (x86 64) -O3

24 ∗2 60,536 185

*1 Core i5-4200U 1.60GHz, RAM 7.7GB, Ubuntu 14.10
*2 Core i7-5500U 2.40GHz, RAM 7.7GB, Ubuntu 14.04

error1.c

1: int main (void) {
2: volatile signed int x = 1;
3: unsigned int t = ((unsigned int)1U<<x);
4: if (t == 2U) ;
5: else builtin abort();
6: return 0;
7: }

gcc.s (GCC-5.0.0 -O3) clang.s (Clang-3.7.0 -O3)

main:
subq $24, %rsp
movl $1, %eax
movl $1, 12(%rsp)
movl 12(%rsp), %ecx
sall %cl, %eax
cmpl $2, %eax
jne .L5
xorl %eax, %eax
addq $24, %rsp
ret

.L5:
call abort

main:
pushq %rax
movl $1, 4(%rsp)
movl 4(%rsp), %eax
cmpl $1, %eax
jne .LBB0 2

xorl %eax, %eax
popq %rdx
retq

LBB0 2:
callq abort

Fig. 3. Error program (1).

codes is called an error program, which may detect under-
optimization in one of the assembly codes. This method
can detect lack of optimizing transformations in one of
the compilers, which was not always possible in [3]. The
proposed method can be also used for regression test; if
an older version produces better codes than the latest
version, there must be some degeneration.

There are many possible ways of comparing assembly
codes. In this paper, we adopt a simple method based on
the instruction count. This is based on our observation
that the assembly codes from the same C program are
usually very similar. Let n and m be the numbers of
the instructions in the two assembly codes where n <
m. Then, two codes are judged to be different if n/m is
smaller than a threshold.

Error programs are minimized for closer investigation.
The same set of program transformations as Orange3 is
used. For example, if x1 and x2 are known to evaluate to
3 and 5, respectively, expression x1+x2 is reduced to x1+5,
then to 3+5 and 8. Reduction is repeated automatically as
long as the resulting assembly codes reproduce differences.

IV. Experimental results

A test system based on the proposed method has been
developed in Perl5 and runs on Linux. Results of exper-
iments are summarized in Table I. The first test was run
on GCC-5.0.0 and Clang-3.7.0 with the -O3 option. In
24 hours, 62,672 cases were tested and 593 programs de-
tected differences in the assembly codes. The other test
was on different versions of GCC. In 24 hours, 185 out of
60,536 programs detected differences. The thresholds for
comparison were set to 0.6 and 0.7 in the first and the sec-
ond runs, respectively. All the error programs were man-
ually inspected after minimization. Among them, there
were cases where we could not tell if they detected lack of

error2.c
1: unsigned int x = 1;

2: int main (void) {
3: long long int a = -2LL;
4: int t = 1 <= (a/x);
5: if (t != 1) { builtin abort(); }
6: return 0;
7: }

gcc5.s (GCC-5.2.1 -O3) gcc6.s (GCC-6.0.0 -O3)

main:
xorl %eax, %eax

ret

main:
movl x(%rip), %ecx
movq $-2, %rax
cqto
idivq %rcx
testq %rax, %rax
jg .L7
xorl %eax, %eax
ret

.L7
pushq %rax
call abort

Fig. 4. Error program (2).

optimization, but some revealed defects.

Fig. 3 shows one of the error programs in the first test.
Code gcc.s faithfully computes the sequence specified in
source code error1.c, for x is a volatile variable. On the
other hand, clang.s just tests if x==1 and omits all the
other computation. We can conclude that GCC-5.0.0 has
missed an opportunity for this optimization. Fig. 4 is an
error program from the second test run. Code gcc5.s is
apparently succinct than gcc6.s, which means that there
has been some regression in GCC-6.0.0. We have so far
reported 2 bugs to Clang/LLVM1, and 3 bugs to GCC2

detected by our test system.

V. Conclusion

The paper has presented a new random test method
to detect lack of arithmetic optimization in C compilers.
The current system generates a considerable number of
false positive error programs, so we are now working on
improvement on the method of assembly code comparison.

Acknowledgement

Authors would like to thank all the members of Ishiura
Lab. of Kwansei Gakuin University. This work was partly
supported by JSPS KAKENHI Grant Number 25330073.

References

[1] Nullstone Corporation: Nullstone for C (online), http:
//www.nullstone.com/.

[2] E. Eide and J. Regehr: “Volatiles are miscompiled, and
what to do about it,” in Proc. EMSOFT, pp. 255–264 (Oct.
2008).

[3] A. Hashimoto and N. Ishiura: “Detecting arithmetic opti-
mization opportunities for C compilers by randomly gen-
erated equivalent programs,” IPSJ Trans. SLDM, vol. 9,
pp. 21–29 (Feb. 2016).

[4] R. B. Evans and A. Savoia: “Differential testing: A new
approach to change detection,” in Proc. ACM ESEC-FSE,
pp. 549–552 (Sept. 2007).

[5] X. Yang, Y. Chen, E. Eide, and J. Regehr: “Finding and
understanding bugs in C compilers,” in Proc. ACM PLDI,
pp. 283–294 (June 2011).

[6] E. Nagai, A. Hashimoto, and N. Ishiura: “Reinforcing ran-
dom testing of arithmetic optimization of C compilers by
scaling up size and number of expressions,” IPSJ Trans.
SLDM, vol. 7, pp. 91–100 (Aug. 2014).

1 https://llvm.org/bugs/ id=23673, 23672
2 https://gcc.gnu.org/bugzilla/ id=66299, 68026, 68431

- 3 -

