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Abstract – Fingerprinting techniques are generally used to 
search a song quickly. In this paper, the fingerprint generation 
method HiFP2.0 and the identification method Staged LSH are 
combined and executed almost simultaneously. This method 
reduced around 3600 clock cycles and was about 8.54 % faster 
than the sequential execution of them in the case that the song of 
the query was a bit distorted by the lossy compression of MP3. 

I. Introduction 
Recent Internet provides an active field to distribute and 

enjoy music, while it is also being a hotbed of illegal copies. 
It is attractive to share songs on the Internet, but people feel 
uneasy because they must be always careful of laws and 
techniques for copyright protection. 

The purpose of our research is to let such people share 
songs simply and legitimately. More specifically, as shown in 
Fig. 1, the routers by any Internet Service Provider (ISP) 
monitor packets and automatically detect registered songs, 
and then transmit the corresponding license and fee 
information to the receiver of the song file. This possibly 
allows the receiver to automatically pay the fee and obey the 
law. Enabling the router to search songs is the first step to 
realize the easy and legitimate way to share songs. In this 
system, only the users have to do is transmitting and 
receiving song files as plaintext through the router. AFP 
stands for Audio Fingerprint and it is described later. 

The main difficulty in this system is the latency to search 
songs. The routers by ISPs must search songs from the large 
database quickly in this application. The speed of recent 
routers is 1, 10 or 40 Gbps, and even 400 Gbps is being 
developed. Then, for example, a song file of 1MB can pass 
40 Gbps router in 0.18 ms if Song Data Extraction takes 
10 % of the total latency and all other overheads are ignored. 
In other words, routers must complete searching in 0.18 ms. 
For achieving this, fingerprinting techniques are inevitable. 

This paper introduces the audio fingerprint generation 
method named HiFP2.0 and identification method named 
Staged LSH, and then shows that they can be executed almost 
simultaneously to reduce total execution time at the cost of 
the small additional resource utilization. 

The remaining of this paper is organized as follows. 
Section II introduces general explanations of fingerprinting 
technique and the hardware-oriented AFP generation method 
named HiFP2.0. Section III describes Staged LSH to quickly 
search AFP and our proposed method to execute HiFP2.0 and 
Staged LSH simultaneously. Section IV is the experiments 
and the resource utilization. Section V concludes the paper. 

 
Fig. 1. Quick and legitimate song sharing system 

II. Audio Fingerprint and Related Works 
A. Audio Fingerprint 

Audio fingerprint (AFP) is compact data which 
summarizes a song based on acoustic features. When you 
have a song file without any metadata and need to find it 
from the database about the vast number of songs, you should 
compare not the raw data of the song but the AFP of it. 

The comparison process of AFP is faster than that of the 
raw data of songs because the size of AFP is smaller. The 
number of comparison instructions executed by processors 
becomes small and fast storage for the database might be 
available. Moreover, you do not need to prepare for many file 
types of songs such as WAV, MP3 or so on, because AFP 
techniques take advantage of acoustic features and are based 
on PCM data. 

B. Related Works 

So far, several AFP generation methods based on FFT or 
DWT have been proposed. The first paper on AFP as far as 
we know is [1]. It is based on Fourier transformation, but so 
it needs operations of floating-point numbers. Hence it is not 
so suitable for implementing on FPGA, compared with 
operations of integers. 

Haitsma’s method was improved by reducing the size of 
AFP [2]. This was done by finding the location where the 
probability of distortion is low in AFP. However, it takes 
advantage of Haitsma’s method and is not the best choice to 
accelerate the speed of AFP generation by FPGA. 

Martinez et al. implemented audio fingerprinting technique 
on FPGA and GPGPU [3]. But this still calculates FFT, and 
the exact latency was not mentioned in the paper. There are 
very limited research papers on the AFP technique which is 
accelerated by FPGA or the other hardware-specific methods. 
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HiFP2.0 is another method to generate AFP from a song, 
which was developed by Araki [4]. Fig. 2 is the outline of the 
process of HiFP2.0. It generates 4096-bit AFP from PCM 
data of a song based on Discrete Wavelet Transformation 
(DWT) by Haar. 

HiFP2.0 is hardware-oriented because it takes advantage 
of Haar Wavelet Transformation and only needs addition, 
shift operation and comparison of integers. Fig. 3 and Fig. 4 
are the detailed algorithms of MHWT in Fig.2 and HiFP2.0 
respectively, which are quoted and a bit revised from [4]. 

In our implementation, the number of clock cycles needed 
for HiFP2.0 is 4109 by pipelining it and generating 1 bit of 
AFP per 1 clock cycle, where PCM data were cyclically 
divided into a few BRAMs and were read in parallel. Further 
parallelization of HiFP2.0 is possible, but we did not apply it 
this time in order to save resources of FPGA and to simplify 
the explanations.

 

 
Fig. 2. Outline of HiFP2.0 process 
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MHWT(wav[] � Input signal, 
       n � Number of samples of input signal, 
       m � Number of output samples) { 
  for (; n > m; n /= 2) do 
    for (i = 0; i < n/2; i++) do 
      Hi[i] = (wav[2*i] – wav[2*i+1])/2; 
      Lo[i] = (wav[2*i] + wav[2*i+1])/2; 
    end for 
    wav[] � Lo[]; 
  end for 
  return (Hi, Lo);} 

Fig. 3. The algorithm of Multi-level subband decomposition 
using the Haar Wavelet Transformation (MHWT) 
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HiFP2.0(wav[] � PCM data) { 
  n � 131,702; /* Number of samples of input signal */ 
  m � 16,384; /* Number of output samples */ 
  Hi[], Lo[] � MHWT(wav[], n, m); 
  j � 0; 
  for (i = 0; i < m - 4; i += 4) do 
    tmp = Lo[i] – Lo[i+4]; 
    if tmp > 0 then 
      AFP[j] = 1; 
    else 
      AFP[j] = 0; 
    end if 
    j++; 
  end for 
  AFP[m/4-1] = 0; 
  return AFP;} 

Fig. 4. The algorithm of HiFP2.0 

III. Proposed Method: Staged LSH over HiFP2.0 
A. Staged LSH 

Staged LSH is a method to quickly identify AFP which is 
the most similar to that of the transmitting song file (the 
query) through the router, which was developed by Yang [5]. 

This takes advantage of hash search, and the execution 
time of hash search is theoretically constant when there is not 
any collision of the hash values or any bit error in AFP of the 
query. 

Fig. 5 shows 3 types of data unit which are used in Staged 
LSH. One is AFP and the remaining two are Sub-Fingerprint 
(Sub-FP) and Frame. Sub-FP is a 32-bit compartment of an 
AFP and Frame is a sequential triplet of Sub-FPs. 

Fig. 6 shows a general process of Staged LSH. It repeats 3 
steps named Hash Search, Coarse Search and Exact Search 
126 times at most. Hash Search and Coarse Search in each 
loop refers fidx-th frame: Frame[fidx], where fidx is the loop 
number (0 for 1st loop and 125 for final loop). 

 
Fig. 5. Relationship of AFP, Sub-FP and Frame 

 

 
Fig. 6. Outline of Staged LSH process 
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Hash Search calculates a hash value from a frame of the 
query and finds all frames in the database of AFPs (FPDB) 
whose hash value is same. 

Coarse Search checks hamming distance between the 
frame of the query and those of AFPs in FPDB. The only 
AFPs in FPDB whose hamming distance is equal to or less 
than a threshold can pass Coarse Search. 

Exact Search also checks hamming distance, but the range 
is not a frame but whole AFP. It compares not 96 bits but 
4096 bits and the threshold is different from Coarse Search. 

The actual execution time of Staged LSH depends on the 
latency of memory accesses. Staged LSH might require large 
memories for the hash table and FPDB. These data might be 
more than 10 gigabytes in the case that it supports 3500 
songs like Google Play Music or Apple Music. The latency to 
access such large memories usually varies and is not small. 

Our implementation uses PCI Express (PCIe) 3.0 x8. The 
theoretical speed of PCIe of the FPGA board which we used, 
named VC709 connectivity kit, is 5.72 GB/s [6]. But in our 
current implementation, the measured speed was 26.7 MB/s 
and so the latency to read 1 DW (32 bits) was 0.15 us. 

The latency of Staged LSH also depends on the distortion 
of the query. The PCM data of the query are sometimes 
distorted by MP3 compression. And this prevents Staged 
LSH from completing its process in the first loop, mainly 
because Hash Search fails. So it is also important in Staged 
LSH to evaluate the performance in the case of the distortion. 

In our implementation of the hash table, Hash Search and 
Coarse Search generally need to read (2 + 1.02N) DWs from 
FPDB in total, where N is the number of entries in a bucket 
and an entry is the address of a frame whose hash value is 
same. And Exact Search needs to read 128M DWs where M 
is the number of AFP which passes Coarse Search. Therefore, 
the total execution time of Staged LSH is around (2 + 1.02N 
+ 128M) * L * 0.15 us, where L is the number of loops to 
find AFP enough similar to that of the query. 

B. Overlap of Stage LSH and HiFP2.0 

Actually, HiFP2.0 and Staged LSH can be executed almost 
simultaneously. That seems impossible by a naive thought 
because HiFP2.0 outputs 4096-bit AFP or 128 Sub-FPs and 
Staged LSH requires full of them. But the step in Staged LSH 
which uses all 128 Sub-FPs is only Exact Search. Hash 
Search and Coarse Search need only 3 Sub-FPs in each loop. 

Fig. 7 shows the brief interface between HiFP2.0 and 
Staged LSH in the proposed method. The both modules are 
executed almost simultaneously. HiFP2.0 generates a SubFP 
per 32 clock cycles and stores it to the Block RAM, and set a 
corresponding bit in SubFP_av flags at the same time to let 
Staged LSH module recognize the SubFP is available. 

In Fig. 7, when a Frame becomes available, Staged LSH 
can execute Hash Search and Coarse Search. And if there is 
any Frame in FPDB which deserves to go to Exact Search, 
Staged LSH waits until all the bits in SubFP_av are set and 
then goes to Exact Search. If there was no Frame in FPDB 
similar to that of the query in Hash Search and Coarse Search, 
Staged LSH waits until the next Frame is available and then 
repeats Hash Search and Coarse Search. 

 
Fig. 7. Outline of the proposed method 

The proposed method can be at most 2 times faster than 
the situation that Staged LSH starts after HiFP2.0 finishes. 
The best case is that the execution times of HiFP2.0 and 
Staged LSH are same. 

This method rarely increases the delay of HiFP2.0 or 
Staged LSH because it just adds SubFP_av and sets/waits one 
of the flags each time 32 bits of AFP are generated. 

The probability that Staged LSH outputs a wrong answer 
in the case of that the query is distorted because of MP3 
compression, cannot be worsened by the proposed method, 
because this method maintains the data dependencies. 

IV. Evaluation 
A. Experimental Conditions 

We carried out an experiment by real machines to evaluate 
the proposed method. 

Table I is the basic experimental conditions. In this 
experiment, 10 million song files were generated by random 
numbers beforehand and each of them was 1MB and omits 
noise 6 seconds. 100 queries were randomly determined from 
the 10 million song files beforehand. As queries, distorted 
song files were prepared as well as original song files by 
lame 3.99.5 program. The commands for attaching the 
distortion are as follows: 

lame -b 128 original.wav temporal.mp3 
lame --decode temporal.mp3 distorted.wav 

Table II is the parameters of Staged LSH. We constructed 
FPDB and the hash table, which are almost 10GB in total, 
based on original song files above, where the bit length of the 
hash values is 24. Provided that all frames can be assumed as 
random numbers, the number of entries in each bucket will 
be N = 126 x 107 / 224 = 75.1. 

The thresholds in Table II mean the upper limit of 
hamming distance to pass each step of Staged LSH. Provided 
that AFPs can be assumed as random numbers, the 
probabilities that a different song passes Coarse Search and 
Exact Search are 4.85 x 10-7 % and 4.33 x 10-235 % 
respectively. Because the probability about Coarse Search is 
so small, the number of AFP which passes it is also negligible 
except for the correct AFP. As for Exact Search, the 
probability that any different song from ten million songs can 
pass is 2.16 x 10-215 % even if the birthday paradox is 
considered. 

Table III shows the device and the clock frequency to be 
used in the experiments. Table IV and V are about the 
development tool for FPGA. The board we used was VC709 
Connectivity Kit by Xilinx Inc. and the parts in it were 
unmodified. The tool which supports VC709 is Vivado. PCI 
Express (PCIe) 3.0 x8 is available in VC709 and the FPGA 
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can communicate with a desktop PC through the IP core. The 
clock frequency to control the IP core for PCIe is 250 MHz 
and we used this clock also for executing HiFP2.0 and Staged 
LSH. BRAM in Table V is used for Base Address Register 0 
(BAR0) memory region of PCIe, by which the desktop PC 
lets VC709 know the beginning of the logical address of 
FPDB. 

TABLE I 
Basic Experimental Conditions 

Parameter Value 

Content of Audio File Random Number 

Size of Query 1 MB 

Number of AFPs in FPDB 10 Million 

Number of Queries 100 

Distortion 
Encoding / Decoding 

MP3 128bps 
by lame 3.99.5 

TABLE II 
Parameters of Staged LSH 

Parameter Value 

Bit Length of Hash 24 

Threshold in Coarse Search 24 

Threshold in Exact Search 1024 

TABLE III 
Execution Environment 

Item Description 

Board VC709 Connectivity Kit 

Device XC7VX690T-2FFG1761C 

Clock Frequency 250 MHz 

TABLE IV 
Development Environment 

Item Description 

Machine ThinkPad X240 

Operating System Ubuntu 14.04.4 LTS 

Kernel 3.16.0-71-generic (x86_64) 

Design Tool Vivado HLS 2016.1 

TABLE V 
Vivado IP Cores 

Purpose IP Core

PCI Express Virtex-7 FPGA Gen3 Integrated Block 
for PCI Express 4.2 

BRAM Block Memory Generator 8.3 (Rev. 2) 

Vivado 2016.1 also has High Level Synthesis (HLS) 
function and we took advantage of it for implementation of 
HiFP2.0 and Staged LSH modules. To let them use PCIe, we 
applied manual interfaces in HLS to activate the modules 
which we made for controlling IP Core of PCIe in Verilog 
HDL, referring to an example design by Vivado. As for 
BRAM of SubFP, it is dual-port and written in Verilog HDL. 
One side of this BRAM is connected to HiFP2.0 module as 
RAM_1P_BRAM and the other side is connected to the 
Staged LSH module as ROM_1P_BRAM. SubFP_av is also 
specified as a manual interface. It is written by HiFP2.0 
module and read by Staged LSH module. 

As for the desktop PC, the motherboard is MW50-SV0 by 
GIGABYTE and its interfaces to memories (32GB) are 
DDR4. We made and used a device driver which probes 
VC709 with the specified vendor ID and device ID of PCIe, 
allocates consecutive and coherent memory regions, and lets 
the application software write FPDB and a query in the 
region and order VC709 to start searching a song and read the 
result. 

B. Experimental Results 

We measured the average numbers of clock cycles to 
execute (1), (2), (3) and (4) shown in Fig. 8 in the conditions 
of Table I, II, III, IV and V. (1), (2) and (3) are about the 
situation that disables the proposed method, while (4) is 
about the proposed method. First, the desktop PC orders 
FPGA to start searching a song (by writing BAR0 memory) 
and then FPGA loads the query (WAV file of the song) to a 
BRAM, but this process is not measured. The first measured 
time is “(1) HiFP2.0.” It is between the beginning of reading 
PCM data from a BRAM and the end of writing AFP to 
another BRAM. The next is “(2) Staged LSH.” It is measured 
after (1) completed and is between the beginning of reading 
AFP from the BRAM and identifying the song. “(3) HiFP2.0 
then Staged LSH” is just the addition of (1) and (2). “(4) 
Overlap of HiFP2.0 and Staged LSH” is the time between the 
beginning of reading PCM data from the BRAM and the end 
of identifying the song by the proposed method. 

Table VI is the experimental results which show (1), (2), 
(3) and (4). The differences between (3) and (4) were 3341.01 
clock cycles for original song files and 3645.24 clock cycles 
for distorted song files respectively. 

 
(a) Naive method (sequential execution) 

- 314 -



 
(b) proposed method 

Fig. 8. Time range to measure 

TABLE VI 
Number of Clock Cycles for HiFP2.0 and Staged LSH 

(The numbers between brackets mean the standard deviations) 

Process 
Average Number of Clock Cycles 

Original Distorted 

(1) HiFP2.0 4109.00 
(0) 

4109.00 
(0) 

(2) Staged LSH 9506.08 
(2687.36) 

42215.18 
(33207.42) 

(3) HiFP2.0 then Staged 
LSH 

13615.08 
(2687.36) 

46324.18 
(33207.42) 

(4) Overlap of HiFP2.0 
and Staged LSH 

10274.07 
(2374.18) 

42678.94 
(33117.64) 

(5) Difference 
= (3) – (4) 

3341.01 
(328.34) 

3645.24 
(617.18) 

(6) Improvement ratio 
   = (3) / (4) – 1 32.5 % 8.54 % 

The number of failing to output the correct answer was 
zero in this experiment, even when the query was distorted. 
All 100 queries were correctly identified by both the 
sequential method and the proposed method. 

In summary, the proposed method achieved to reduce 
around 3600 clock cycles, especially in the case that song 
files were distorted. 3600 clock cycles (14.4 us at 250 MHz) 
are almost same as the number of clock cycles needed by 
HiFP2.0. That means that HiFP2.0 and Staged LSH are 
successfully executed simultaneously. Further, 42678.94 
clock cycles and 250 MHz in the case of distorted songs are 
corresponding to 0.171 ms and less than 0.18 ms for 40 Gbps 
described in the Introduction section. 

C. Resource Utilization 

Table VII is the resource utilizations of (3) and (4). The 
increase ratio of (4) to (3) was only 1.16 % on LUT and 
1.79 % on FF. Those are small compared with the reduction 
of the latency (32.5 % or 8.54 %). 

TABLE VII 
Resource Utilizations 

Element (3) HiFP2.0 then 
Staged LSH 

(4) Overlap of 
   HiFP2.0 and 
   Staged LSH 

Ratio of 
increase 

LUT 35268 
(8.14 %) 

35677 
(8.24 %) 1.16 % 

LUTRAM 56 
(0.03 %) 

56 
(0.03 %) 0 % 

FF 20977 
(2.42 %) 

21352 
(2.46 %) 1.79 % 

BRAM 52 
(3.54 %) 

52 
(3.54 %) 0 % 

IO 5 
(0.59 %) 

5 
(0.59 %) 0 % 

GT 8 
(22.22 %) 

8 
(22.22 %) 0 % 

BUFG 5 
(15.63 %) 

5 
(15.63 %) 0 % 

MMCM 1 
(5.00 %) 

1 
(5.00 %) 0 % 

PCIe 1 
(33.33 %) 

1 
(33.33 %) 0 % 

V. Conclusions and Future Works 
To achieve a song sharing system by the routers by ISPs, 

we proposed a method to execute HiFP2.0 and Staged LSH 
simultaneously, which generates and identifies audio 
fingerprints respectively. The experimental result shows that 
the total number of clock cycles is about 3600 less than the 
situation that Staged LSH starts after HiFP2.0 completely 
finishes, especially in the case that the query is distorted. The 
improvement was about 8.54 % and this can help the song 
sharing system speedup to 40 Gbps. 

One of the future works is out-of-order execution of 
HiFP2.0 and Staged LSH. Packets do not always arrive in the 
correct order in Internet Protocol (IP), so executing HiFP2.0 
and Staged LSH little by little per arrival of a packet can lead 
the improvement of performance. Another future work is to 
carry out the experiment with song files more similar to the 
real songs. In this paper, we just used random numbers and 
the generated songs were almost the noise. To make our 
research more practical, experimental data should have some 
melodies, harmonies and rhythms at least. 
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