
Fast Song Searching by Simultaneous Execution of HiFP2.0 and Staged LSH

Abstract – Fingerprinting techniques are generally used to
search a song quickly. In this paper, the fingerprint generation
method HiFP2.0 and the identification method Staged LSH are
combined and executed almost simultaneously. This method
reduced around 3600 clock cycles and was about 8.54 % faster
than the sequential execution of them in the case that the song of
the query was a bit distorted by the lossy compression of MP3.

I. Introduction
Recent Internet provides an active field to distribute and

enjoy music, while it is also being a hotbed of illegal copies.
It is attractive to share songs on the Internet, but people feel
uneasy because they must be always careful of laws and
techniques for copyright protection.

The purpose of our research is to let such people share
songs simply and legitimately. More specifically, as shown in
Fig. 1, the routers by any Internet Service Provider (ISP)
monitor packets and automatically detect registered songs,
and then transmit the corresponding license and fee
information to the receiver of the song file. This possibly
allows the receiver to automatically pay the fee and obey the
law. Enabling the router to search songs is the first step to
realize the easy and legitimate way to share songs. In this
system, only the users have to do is transmitting and
receiving song files as plaintext through the router. AFP
stands for Audio Fingerprint and it is described later.

The main difficulty in this system is the latency to search
songs. The routers by ISPs must search songs from the large
database quickly in this application. The speed of recent
routers is 1, 10 or 40 Gbps, and even 400 Gbps is being
developed. Then, for example, a song file of 1MB can pass
40 Gbps router in 0.18 ms if Song Data Extraction takes
10 % of the total latency and all other overheads are ignored.
In other words, routers must complete searching in 0.18 ms.
For achieving this, fingerprinting techniques are inevitable.

This paper introduces the audio fingerprint generation
method named HiFP2.0 and identification method named
Staged LSH, and then shows that they can be executed almost
simultaneously to reduce total execution time at the cost of
the small additional resource utilization.

The remaining of this paper is organized as follows.
Section II introduces general explanations of fingerprinting
technique and the hardware-oriented AFP generation method
named HiFP2.0. Section III describes Staged LSH to quickly
search AFP and our proposed method to execute HiFP2.0 and
Staged LSH simultaneously. Section IV is the experiments
and the resource utilization. Section V concludes the paper.

Fig. 1. Quick and legitimate song sharing system

II. Audio Fingerprint and Related Works
A. Audio Fingerprint

Audio fingerprint (AFP) is compact data which
summarizes a song based on acoustic features. When you
have a song file without any metadata and need to find it
from the database about the vast number of songs, you should
compare not the raw data of the song but the AFP of it.

The comparison process of AFP is faster than that of the
raw data of songs because the size of AFP is smaller. The
number of comparison instructions executed by processors
becomes small and fast storage for the database might be
available. Moreover, you do not need to prepare for many file
types of songs such as WAV, MP3 or so on, because AFP
techniques take advantage of acoustic features and are based
on PCM data.

B. Related Works

So far, several AFP generation methods based on FFT or
DWT have been proposed. The first paper on AFP as far as
we know is [1]. It is based on Fourier transformation, but so
it needs operations of floating-point numbers. Hence it is not
so suitable for implementing on FPGA, compared with
operations of integers.

Haitsma’s method was improved by reducing the size of
AFP [2]. This was done by finding the location where the
probability of distortion is low in AFP. However, it takes
advantage of Haitsma’s method and is not the best choice to
accelerate the speed of AFP generation by FPGA.

Martinez et al. implemented audio fingerprinting technique
on FPGA and GPGPU [3]. But this still calculates FFT, and
the exact latency was not mentioned in the paper. There are
very limited research papers on the AFP technique which is
accelerated by FPGA or the other hardware-specific methods.

Masahiro Fukuda

School of Information Science
Japan Advanced Institute of Science and Technology

Nomi, Ishikawa 923-1211
e-mail : fukuda-masahiro@jaist.ac.jp

Yasushi Inoguchi

Research Center for Advanced Computing Infrastructure
Japan Advanced Institute of Science and Technology

Nomi, Ishikawa 923-1211
e-mail : inoguchi@jaist.ac.jp

SASIMI 2016 ProceedingsR4-7

- 311 -

HiFP2.0 is another method to generate AFP from a song,
which was developed by Araki [4]. Fig. 2 is the outline of the
process of HiFP2.0. It generates 4096-bit AFP from PCM
data of a song based on Discrete Wavelet Transformation
(DWT) by Haar.

HiFP2.0 is hardware-oriented because it takes advantage
of Haar Wavelet Transformation and only needs addition,
shift operation and comparison of integers. Fig. 3 and Fig. 4
are the detailed algorithms of MHWT in Fig.2 and HiFP2.0
respectively, which are quoted and a bit revised from [4].

In our implementation, the number of clock cycles needed
for HiFP2.0 is 4109 by pipelining it and generating 1 bit of
AFP per 1 clock cycle, where PCM data were cyclically
divided into a few BRAMs and were read in parallel. Further
parallelization of HiFP2.0 is possible, but we did not apply it
this time in order to save resources of FPGA and to simplify
the explanations.

Fig. 2. Outline of HiFP2.0 process

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

MHWT(wav[] � Input signal,
 n � Number of samples of input signal,
 m � Number of output samples) {
 for (; n > m; n /= 2) do
 for (i = 0; i < n/2; i++) do
 Hi[i] = (wav[2*i] – wav[2*i+1])/2;
 Lo[i] = (wav[2*i] + wav[2*i+1])/2;
 end for
 wav[] � Lo[];
 end for
 return (Hi, Lo);}

Fig. 3. The algorithm of Multi-level subband decomposition
using the Haar Wavelet Transformation (MHWT)

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

HiFP2.0(wav[] � PCM data) {
 n � 131,702; /* Number of samples of input signal */
 m � 16,384; /* Number of output samples */
 Hi[], Lo[] � MHWT(wav[], n, m);
 j � 0;
 for (i = 0; i < m - 4; i += 4) do
 tmp = Lo[i] – Lo[i+4];
 if tmp > 0 then
 AFP[j] = 1;
 else
 AFP[j] = 0;
 end if
 j++;
 end for
 AFP[m/4-1] = 0;
 return AFP;}

Fig. 4. The algorithm of HiFP2.0

III. Proposed Method: Staged LSH over HiFP2.0
A. Staged LSH

Staged LSH is a method to quickly identify AFP which is
the most similar to that of the transmitting song file (the
query) through the router, which was developed by Yang [5].

This takes advantage of hash search, and the execution
time of hash search is theoretically constant when there is not
any collision of the hash values or any bit error in AFP of the
query.

Fig. 5 shows 3 types of data unit which are used in Staged
LSH. One is AFP and the remaining two are Sub-Fingerprint
(Sub-FP) and Frame. Sub-FP is a 32-bit compartment of an
AFP and Frame is a sequential triplet of Sub-FPs.

Fig. 6 shows a general process of Staged LSH. It repeats 3
steps named Hash Search, Coarse Search and Exact Search
126 times at most. Hash Search and Coarse Search in each
loop refers fidx-th frame: Frame[fidx], where fidx is the loop
number (0 for 1st loop and 125 for final loop).

Fig. 5. Relationship of AFP, Sub-FP and Frame

Fig. 6. Outline of Staged LSH process

- 312 -

Hash Search calculates a hash value from a frame of the
query and finds all frames in the database of AFPs (FPDB)
whose hash value is same.

Coarse Search checks hamming distance between the
frame of the query and those of AFPs in FPDB. The only
AFPs in FPDB whose hamming distance is equal to or less
than a threshold can pass Coarse Search.

Exact Search also checks hamming distance, but the range
is not a frame but whole AFP. It compares not 96 bits but
4096 bits and the threshold is different from Coarse Search.

The actual execution time of Staged LSH depends on the
latency of memory accesses. Staged LSH might require large
memories for the hash table and FPDB. These data might be
more than 10 gigabytes in the case that it supports 3500
songs like Google Play Music or Apple Music. The latency to
access such large memories usually varies and is not small.

Our implementation uses PCI Express (PCIe) 3.0 x8. The
theoretical speed of PCIe of the FPGA board which we used,
named VC709 connectivity kit, is 5.72 GB/s [6]. But in our
current implementation, the measured speed was 26.7 MB/s
and so the latency to read 1 DW (32 bits) was 0.15 us.

The latency of Staged LSH also depends on the distortion
of the query. The PCM data of the query are sometimes
distorted by MP3 compression. And this prevents Staged
LSH from completing its process in the first loop, mainly
because Hash Search fails. So it is also important in Staged
LSH to evaluate the performance in the case of the distortion.

In our implementation of the hash table, Hash Search and
Coarse Search generally need to read (2 + 1.02N) DWs from
FPDB in total, where N is the number of entries in a bucket
and an entry is the address of a frame whose hash value is
same. And Exact Search needs to read 128M DWs where M
is the number of AFP which passes Coarse Search. Therefore,
the total execution time of Staged LSH is around (2 + 1.02N
+ 128M) * L * 0.15 us, where L is the number of loops to
find AFP enough similar to that of the query.

B. Overlap of Stage LSH and HiFP2.0

Actually, HiFP2.0 and Staged LSH can be executed almost
simultaneously. That seems impossible by a naive thought
because HiFP2.0 outputs 4096-bit AFP or 128 Sub-FPs and
Staged LSH requires full of them. But the step in Staged LSH
which uses all 128 Sub-FPs is only Exact Search. Hash
Search and Coarse Search need only 3 Sub-FPs in each loop.

Fig. 7 shows the brief interface between HiFP2.0 and
Staged LSH in the proposed method. The both modules are
executed almost simultaneously. HiFP2.0 generates a SubFP
per 32 clock cycles and stores it to the Block RAM, and set a
corresponding bit in SubFP_av flags at the same time to let
Staged LSH module recognize the SubFP is available.

In Fig. 7, when a Frame becomes available, Staged LSH
can execute Hash Search and Coarse Search. And if there is
any Frame in FPDB which deserves to go to Exact Search,
Staged LSH waits until all the bits in SubFP_av are set and
then goes to Exact Search. If there was no Frame in FPDB
similar to that of the query in Hash Search and Coarse Search,
Staged LSH waits until the next Frame is available and then
repeats Hash Search and Coarse Search.

Fig. 7. Outline of the proposed method

The proposed method can be at most 2 times faster than
the situation that Staged LSH starts after HiFP2.0 finishes.
The best case is that the execution times of HiFP2.0 and
Staged LSH are same.

This method rarely increases the delay of HiFP2.0 or
Staged LSH because it just adds SubFP_av and sets/waits one
of the flags each time 32 bits of AFP are generated.

The probability that Staged LSH outputs a wrong answer
in the case of that the query is distorted because of MP3
compression, cannot be worsened by the proposed method,
because this method maintains the data dependencies.

IV. Evaluation
A. Experimental Conditions

We carried out an experiment by real machines to evaluate
the proposed method.

Table I is the basic experimental conditions. In this
experiment, 10 million song files were generated by random
numbers beforehand and each of them was 1MB and omits
noise 6 seconds. 100 queries were randomly determined from
the 10 million song files beforehand. As queries, distorted
song files were prepared as well as original song files by
lame 3.99.5 program. The commands for attaching the
distortion are as follows:

lame -b 128 original.wav temporal.mp3
lame --decode temporal.mp3 distorted.wav

Table II is the parameters of Staged LSH. We constructed
FPDB and the hash table, which are almost 10GB in total,
based on original song files above, where the bit length of the
hash values is 24. Provided that all frames can be assumed as
random numbers, the number of entries in each bucket will
be N = 126 x 107 / 224 = 75.1.

The thresholds in Table II mean the upper limit of
hamming distance to pass each step of Staged LSH. Provided
that AFPs can be assumed as random numbers, the
probabilities that a different song passes Coarse Search and
Exact Search are 4.85 x 10-7 % and 4.33 x 10-235 %
respectively. Because the probability about Coarse Search is
so small, the number of AFP which passes it is also negligible
except for the correct AFP. As for Exact Search, the
probability that any different song from ten million songs can
pass is 2.16 x 10-215 % even if the birthday paradox is
considered.

Table III shows the device and the clock frequency to be
used in the experiments. Table IV and V are about the
development tool for FPGA. The board we used was VC709
Connectivity Kit by Xilinx Inc. and the parts in it were
unmodified. The tool which supports VC709 is Vivado. PCI
Express (PCIe) 3.0 x8 is available in VC709 and the FPGA

- 313 -

can communicate with a desktop PC through the IP core. The
clock frequency to control the IP core for PCIe is 250 MHz
and we used this clock also for executing HiFP2.0 and Staged
LSH. BRAM in Table V is used for Base Address Register 0
(BAR0) memory region of PCIe, by which the desktop PC
lets VC709 know the beginning of the logical address of
FPDB.

TABLE I
Basic Experimental Conditions

Parameter Value

Content of Audio File Random Number

Size of Query 1 MB

Number of AFPs in FPDB 10 Million

Number of Queries 100

Distortion
Encoding / Decoding

MP3 128bps
by lame 3.99.5

TABLE II
Parameters of Staged LSH

Parameter Value

Bit Length of Hash 24

Threshold in Coarse Search 24

Threshold in Exact Search 1024

TABLE III
Execution Environment

Item Description

Board VC709 Connectivity Kit

Device XC7VX690T-2FFG1761C

Clock Frequency 250 MHz

TABLE IV
Development Environment

Item Description

Machine ThinkPad X240

Operating System Ubuntu 14.04.4 LTS

Kernel 3.16.0-71-generic (x86_64)

Design Tool Vivado HLS 2016.1

TABLE V
Vivado IP Cores

Purpose IP Core

PCI Express Virtex-7 FPGA Gen3 Integrated Block
for PCI Express 4.2

BRAM Block Memory Generator 8.3 (Rev. 2)

Vivado 2016.1 also has High Level Synthesis (HLS)
function and we took advantage of it for implementation of
HiFP2.0 and Staged LSH modules. To let them use PCIe, we
applied manual interfaces in HLS to activate the modules
which we made for controlling IP Core of PCIe in Verilog
HDL, referring to an example design by Vivado. As for
BRAM of SubFP, it is dual-port and written in Verilog HDL.
One side of this BRAM is connected to HiFP2.0 module as
RAM_1P_BRAM and the other side is connected to the
Staged LSH module as ROM_1P_BRAM. SubFP_av is also
specified as a manual interface. It is written by HiFP2.0
module and read by Staged LSH module.

As for the desktop PC, the motherboard is MW50-SV0 by
GIGABYTE and its interfaces to memories (32GB) are
DDR4. We made and used a device driver which probes
VC709 with the specified vendor ID and device ID of PCIe,
allocates consecutive and coherent memory regions, and lets
the application software write FPDB and a query in the
region and order VC709 to start searching a song and read the
result.

B. Experimental Results

We measured the average numbers of clock cycles to
execute (1), (2), (3) and (4) shown in Fig. 8 in the conditions
of Table I, II, III, IV and V. (1), (2) and (3) are about the
situation that disables the proposed method, while (4) is
about the proposed method. First, the desktop PC orders
FPGA to start searching a song (by writing BAR0 memory)
and then FPGA loads the query (WAV file of the song) to a
BRAM, but this process is not measured. The first measured
time is “(1) HiFP2.0.” It is between the beginning of reading
PCM data from a BRAM and the end of writing AFP to
another BRAM. The next is “(2) Staged LSH.” It is measured
after (1) completed and is between the beginning of reading
AFP from the BRAM and identifying the song. “(3) HiFP2.0
then Staged LSH” is just the addition of (1) and (2). “(4)
Overlap of HiFP2.0 and Staged LSH” is the time between the
beginning of reading PCM data from the BRAM and the end
of identifying the song by the proposed method.

Table VI is the experimental results which show (1), (2),
(3) and (4). The differences between (3) and (4) were 3341.01
clock cycles for original song files and 3645.24 clock cycles
for distorted song files respectively.

(a) Naive method (sequential execution)

- 314 -

(b) proposed method

Fig. 8. Time range to measure

TABLE VI
Number of Clock Cycles for HiFP2.0 and Staged LSH

(The numbers between brackets mean the standard deviations)

Process
Average Number of Clock Cycles

Original Distorted

(1) HiFP2.0 4109.00
(0)

4109.00
(0)

(2) Staged LSH 9506.08
(2687.36)

42215.18
(33207.42)

(3) HiFP2.0 then Staged
LSH

13615.08
(2687.36)

46324.18
(33207.42)

(4) Overlap of HiFP2.0
and Staged LSH

10274.07
(2374.18)

42678.94
(33117.64)

(5) Difference
= (3) – (4)

3341.01
(328.34)

3645.24
(617.18)

(6) Improvement ratio
 = (3) / (4) – 1 32.5 % 8.54 %

The number of failing to output the correct answer was
zero in this experiment, even when the query was distorted.
All 100 queries were correctly identified by both the
sequential method and the proposed method.

In summary, the proposed method achieved to reduce
around 3600 clock cycles, especially in the case that song
files were distorted. 3600 clock cycles (14.4 us at 250 MHz)
are almost same as the number of clock cycles needed by
HiFP2.0. That means that HiFP2.0 and Staged LSH are
successfully executed simultaneously. Further, 42678.94
clock cycles and 250 MHz in the case of distorted songs are
corresponding to 0.171 ms and less than 0.18 ms for 40 Gbps
described in the Introduction section.

C. Resource Utilization

Table VII is the resource utilizations of (3) and (4). The
increase ratio of (4) to (3) was only 1.16 % on LUT and
1.79 % on FF. Those are small compared with the reduction
of the latency (32.5 % or 8.54 %).

TABLE VII
Resource Utilizations

Element (3) HiFP2.0 then
Staged LSH

(4) Overlap of
 HiFP2.0 and
 Staged LSH

Ratio of
increase

LUT 35268
(8.14 %)

35677
(8.24 %) 1.16 %

LUTRAM 56
(0.03 %)

56
(0.03 %) 0 %

FF 20977
(2.42 %)

21352
(2.46 %) 1.79 %

BRAM 52
(3.54 %)

52
(3.54 %) 0 %

IO 5
(0.59 %)

5
(0.59 %) 0 %

GT 8
(22.22 %)

8
(22.22 %) 0 %

BUFG 5
(15.63 %)

5
(15.63 %) 0 %

MMCM 1
(5.00 %)

1
(5.00 %) 0 %

PCIe 1
(33.33 %)

1
(33.33 %) 0 %

V. Conclusions and Future Works
To achieve a song sharing system by the routers by ISPs,

we proposed a method to execute HiFP2.0 and Staged LSH
simultaneously, which generates and identifies audio
fingerprints respectively. The experimental result shows that
the total number of clock cycles is about 3600 less than the
situation that Staged LSH starts after HiFP2.0 completely
finishes, especially in the case that the query is distorted. The
improvement was about 8.54 % and this can help the song
sharing system speedup to 40 Gbps.

One of the future works is out-of-order execution of
HiFP2.0 and Staged LSH. Packets do not always arrive in the
correct order in Internet Protocol (IP), so executing HiFP2.0
and Staged LSH little by little per arrival of a packet can lead
the improvement of performance. Another future work is to
carry out the experiment with song files more similar to the
real songs. In this paper, we just used random numbers and
the generated songs were almost the noise. To make our
research more practical, experimental data should have some
melodies, harmonies and rhythms at least.

References
[1] Jaap Haitsma and Ton Kalker, “A Highly Robust Audio

Fingerprinting System,” Proceedings of the International
Society for Music Information Retrieval (ISMIR), pp. 107-115,
2002.

[2] Hendrik Schreiber and Meinard Muller, “Accelerating
Index-Based Audio Identification,” IEEE Transactions on
Multimedia, Volume 16, Issue 6, 2014.

- 315 -

[3] Jose Ignacio Martinez, Jaime Vitola, Adriana Sanabria, Cesar
Pedraza, "Fast Parallel Audio Fingerprinting Implementation in
Reconfigurable Hardware and GPUs," Proceedings of the
Southern Conference on Programmable Logic (SPL), pp.
245-250, Apr. 2011.

[4] Koichi Araki, Yukinori Sato, Vijay Jain and Yasushi Inoguchi,
“Performance evaluation of audio fingerprint generation using
Haar wavelet transform,” Proceedings of the 2011 International
Workshop on Nonlinear Circuits, Communications and Signal
Processing (NCSP11), pp. 380-383, 2011.

[5] Fan Yang, Yukinori Sato, Yiyu Tan and Yasushi Inoguchi,
“Searching acceleration for audio fingerprinting system,”
Proceedings of the 2012 Joint Conference of Hokuriku
Chapters of Electrical Societies (JHES), F-15, 2012.

[6] Xilinx, “Virtex-7 FPGA XT connectivity targeted reference
design for the VC709 board (UG962 (v3.0)),” 2014.

- 316 -

