
Finding Effective Simulation Patterns
for Coverage–Driven Verification Using Deep Learning

Abstract - Verification of RT/gate-level designs has been a
long-standing bottleneck in the process of hardware design.
Mainly simulation-based verification has been used for this
purpose, and recently, coverage-driven verification has been
used. In coverage-driven verification, it is important that
each cover point is covered with fairly a large number of
input patterns. Therefore, generating many new simulation
patterns, in particular, for hard-to-cover points is necessary.
We propose a method to learn features of simulation
patterns by machine learning, that is, deep learning, and to
find simulation patterns covering a certain cover point which
is hard to be covered, based on reconstruction errors. The
experimental results show that the proposed method is
efficient in finding effective simulation patterns.

I. Introduction

Verification of RT/gate-level designs has been a
long-standing bottleneck in the process of hardware design.
There are two types of verification methods, which are
formal verification and simulation-based verification.

In simulation-based verification, simulation patterns are
prepared manually or automatically. Automatic simulation
pattern generation is desirable because manual simulation
pattern generation takes a high cost. However, simple random
pattern generation cannot verify rare corner cases effectively.
In simulation-based verification, we use a metric called
coverage that is a measure of progress of verification.

Coverage-driven verification aims improvement of
coverage. It performs simulation first, and then it generates
input patterns that are expected to improve coverage based on
the result of coverage analysis, and repeat these processes. In
coverage-driven verification, it is important that each cover
point is covered with fairly a large number of input patterns.
Therefore, generating many new simulation patterns, in
particular, for hard-to-cover points is necessary. In this paper,
we propose a method that learns features of simulation
patterns by machine learning, that is, deep learning, and finds
effective new simulation patterns among randomly generated
patterns.

Deep learning is a machine learning technique using
multilayer neural networks, which has been attracting
attention recently. It has been applied to image recognition

[1], speech recognition [3] and so on, and it shows higher
performance than the other machine learning techniques. We
apply it to find effective input patterns for coverage-driven
verification.

Given an input vector, a neural network propagates values
from the input nodes to the output nodes, depending on the
parameters such as weights and biases given to nodes in the
network. We consider training vectors, which is usually
composed of an input vector and a target vector we obtain as
an observation. Given a set of training vectors, that is, a
training set, learning a network means tuning the parameters
so that the network fits the training set most under some
score such as log-likelihood. In deep learning, we perform
“pre-training” to find better parameters. When we use a
pre-training method based on Restricted Boltzmann Machine
(RBM) [4,11], we can learn abstract features of a training set.
More importantly, given an input vector, RBM-based
approach can give so called a “reconstruction vector”. The
input vector can be propagated toward the output layers of
the network, and then, can be propagated backward to the
input layer, which results in a reconstructed vector. The
difference between the original vector and the reconstructed
vector is the reconstruction error.

We use this deep learning method, in particular,
pre-training and reconstruction errors to generate input
patterns in coverage-driven verification, in order to cover
hard-to-cover points more frequently. First, we perform
simulation once with a number of random patterns and learn
the features of the simulation patterns covering the target
cover points using deep learning in advance. Next, we
generate simulation patterns randomly and we give the
patterns to the multilayer neural network. Then, we calculate
their reconstruction errors and determine the ranking of the
patterns based on the reconstruction errors. Finally, we select
the patterns with ranks higher than a given threshold, and use
them for simulation. Then, we can expect that hard-to-cover
points can be covered more frequently and more quickly than
simple random patterns. We implemented the above proposed
method and investigated its effectiveness through
experiments.

Mami Miyamoto

Interdisciplinary Graduate School of
Science and Engineering

Shimane University
Matsue, Shimane, 690-8504 JAPAN

e-mail : s169513@matsu.shimane-u.ac.jp

Kiyoharu Hamaguchi

Interdisciplinary Graduate School of
Science and Engineering

Shimane University
Matsue, Shimane, 690-8504 JAPAN
e-mail : hama@cis.shimane-u.ac.jp

SASIMI 2016 ProceedingsR4-11

- 335 -

II. Related Works and Contribution

There are many studies on application of machine learning

techniques for coverage-driven verification systems. The
relations between the simulation patterns and coverage points
are learned using Bayesian networks in [7,10], inductive
logic programming in [2] and Markov models in [5]. In these
approaches, based on the learned results, we can generate
input patterns effective to cover target cover points. The
above approaches, however, require to specify manually
which features such as types of instructions or signal
transition probabilities should be learned. In other words,
these approaches cannot learn input patterns directly.

On the other hand, SAT-based approaches [8,9] do not
require to give features explicitly, but the computational costs
are high, because it must apply SAT solvers to designs
represented as boolean expressions. In [8], only
combinational circuits were handled. In [9], heuristic
approaches specific to microprocessors were introduced.

The contributions of the method we propose are as
follows:

1. It does not require to specify features to be focused
on at learning. It can handle input patterns directly.
This means our method requires less of manual work.

2. It does not deal with boolean expressions, but only
input patterns and their corresponding coverage. This
implies our method can scale better.

III. Deep Learning

A. Deep Learning

Deep learning is a machine learning technique using
multilayer neural networks as shown in the Figure 1. Since
the number of layers is large, neural networks of this type can
extract features hierarchically. Its power of expression is
much stronger than classical neural networks of three layers
and it can handle more complex data.

The characteristic of recognition using deep learning is to
perform extraction of features from training sets by
unsupervised learning automatically. This unsupervised
learning is called pre-training. By performing pre-training,
multilayer neural networks have come to be able to perform
learning effectively.

Figure 1. Multilayer Neural Network

Specifically, in pre-training, it learns the parameters for

each of succeeding two layers from the input layer. Mainly,

RBM (Restricted Boltzmann Machines) [4,11] or
Autoencoder [6] is used for the learning of this step. Here, we
use RBM in pre-training. In fine-tuning, the network
performs supervised learning using the parameter obtained by
pre-training. Mainly, backpropagation is used for the learning
of this step.

1) Neural Network Architecture

Figure 2. Neural Network

Figure 3. Configuration of unit

 Figure 2 shows a classical three-layer neural
network underlying deep learning. An input vector is
given to the input layer. Figure 3 shows a
configuration of each unit. �� is the output of a unit,
and is calculated as follows:

�� � �����

�

� ��

�� � ������

where �� is an input to a unit, ��� is a connection
weight between units, �� is the bias of a unit.�� is
called a sigmoid function, which is defined as follows:

���� �
�

� � �������

 In the learning process, a set of training vectors, or
a training set is given, and the parameters are tuned to
fit the set under score such as log-likelihood. A
training vector is processed one by one, where the
parameters of the network are updated for each
training vector. Since handling the vector one by one
is costly, batch learning is often used, where an update
is done for a subset of training vectors, called a batch,
instead of each training vector. Number of learnings
refers to the number of the updates.

- 336 -

2) Restricted Boltzmann Machine

Figure 4. Restricted Boltzmann Machine

 In pre-training, each of successive two layers of a
multilayer neural network is regarded as an RBM
(Restricted Boltzmann Machine), and all of the RBMs
are learned from the input layers. Figure 4 shows a
configuration of an RBM. An RBM has visible and
hidden units, and consists of a matrix of weights
� � ����� , where ��� is associated with the
connection between visible unit �� and hidden unit
��, as well as bias weights �� for a visible unit and ��
for a hidden unit. Given these, the energy for
configuration ��� �� is defined as:

������ �� � � ����

�

� ����
�

� �������
���

��

where � � ��� ���� is a set of parameters of the
network. As in general boltzmann machines,
probability distributions over visible and hidden
vectors are defined in terms of the energy function:

������ �� �
��������������

����������������

 (1)

 From Eq. 1, we can obtain the following:

���� � ���� �� � ���� � ������ � (2)

and
���� � ���� �� � ���� � ������ � (3) ,

where � denotes the sigmoid function.
 In learning of an RBM, input vectors only for
visible units are given as a training set. By using Eq. 2
and Eq. 3 alternately, the parameters are adjusted so
that they maximize the likelihood of �.
 Update equation of � is as follows:

� � � � �
�����

��
��

where � is called a learning rate, which is the
weight of update of �. ���� is the log-likelihood
of marginal distribution����� �� � ���� �� ��� .

3) Pre-training

 The pre-training is performed as follows:

(i) Learn the parameters between the first two

layers including the input layer using the
training set by RBM.

(ii) Give the value of the hidden units obtained in
(i) to the next two layers and perform learning
by RBM.

(iii) Repeat (ii) for each layer.

 An RBM learns the parameters in order to
approximate the distribution of the visible layer to the
distribution of the training set. In other words, the
parameters are learned so that the hidden layer
represents the feature of the training set of visible
layer. Therefore, the network can extract features of
the training set by performed pre-training.

B. Reconstruction Error

In the proposed method, we perform only pre-training by

RBM, without performing fine-tuning. The reconstruction
vector represents how the multilayer neural network
recognizes the input vector. Therefore, the input vector
having a small reconstruction error has the feature that is
similar to the training vectors.

A reconstruction vector and a reconstruction error are
obtained as follows. After the pre-training is finished, we
give an input vector � � ���� ���� � ��� to the multilayer
neural network. The value of each unit can be obtained
stochastically by forward propagation (Eq. 2). After the
input vector reaches the final layer, the value of each unit
can be obtained stochastically by backward propagation
(Eq. 3).

The vector �� � ����� ����� � ���� that is obtained at the
input layer is referred to as the reconstruction vector of the
input vector � � ���� ���� � ��� . We compare �� and �
by the following equation (the reconstruction error).

������	�
�	���������

� ��� � ����
� � ��� � ����

� ��� ��� � ����
��

IV. Coverage and Coverage-Driven Verification

Figure 5. A flow of coverage-driven verification

Coverage-driven verification is one of hardware design
verification methods, which aims improvements of coverage.
Figure 5 shows a flow of coverage-driven verification.
Coverage-driven verification performs simulation first, and
then it generates input patterns that are expected to improve

- 337 -

coverage based on the result of coverage analysis, and repeat
these processes.

Coverage is a measure for progress of verification. In this
study, we use toggle coverage that is one of code coverage
metrics. Cover points of toggle coverage are signals in the
design, where transitions from 0 to 1 and from 1 to 0 in
signals are checked. We distinguish the transition 0 to 1 from
the transition 1 to 0, and treat them as distinct corner points.
Toggle coverage indicates how far the given design has been
activated by simulation.

V. Finding Effective Simulation Patterns

The proposed method does not perform fine-tuning for the

neural network and only performs pre-training in deep
learning. We perform ranking of the reconstruction errors for
randomly generated simulation patterns and find effective
simulation patterns.

The flow of the procedure is as follows:
1) Pre-training the network.

(i) Choose one cover point that was hard to be
covered on the basis of the results of random
simulation.

(ii) Perform pre-training of a multilayer neural
network using the patterns that cover the cover
point selected in (i).

2) Ranking input patterns.

(i) Generate input patterns randomly.
(ii) Give the patterns to the multilayer neural

network and calculate their reconstruction errors.
(iii) Rank the patterns in an ascending order of their

reconstruction errors.

3) Filtering patterns.

(i) Filter the random patterns based on threshold of
reconstruction errors.

(ii) Use the simulation patterns that passed the filter
to simulation.

We compress the simulation patterns in order to perform

deep learning more quickly and easily. We compressed input
vectors of multi-bit to those of one-bit by using only the most
significant bits. Then, we performed experiments similar to
the next section and compared the case of compressing with
the case of not compressing. As a result, there was no big
difference between them. Therefore, in this study, we
compressed the simulation patterns using only the most
significant bits.

VI. Experimental Results

All experiments were performed on an Intel

Corei5-4590@3.30GHz with 24GB RAM. We implemented
a deep learning algorithm using C language.

A. Experiments

We evaluate the proposed method using the four designs
from the IWLS 2005 benchmarks shown in Table 1. #FF is
the number of flip-flops and #Logic is the number of logic
elements, #CovPnt is the number of all the cover points. We
set coverage points at the output of all flip-flops in the
designs. We distinguish a transition from 0 to 1 and that from
1 to 0. Therefore, #CovPnt is twice as many as #FF. Table 2
shows the designs, the number of units of each layer, the
number of learnings in pre-training and the execution time of
deep learning, respectively. In any case, the number of cycles
of simulation was 50, the number of layers of the multilayer
neural networks was 5, the number of training vectors was
200 and the learning rate was 0.1.

The number of training vectors was decided by an
experiment. Specifically, we performed learning of a
multilayer neural network by changing the number of training
vectors for design of fifo. As a result, the multilayer neural
network that has number of units of each layer is 150, 140,
110, 130, 70 can extract features of simulation patterns when
the number of training vectors is 200. However, it could not
extract features without increasing the number of units of
each layer when the number of training vectors is 500. The
learning time becomes unrealistically large. Therefore, we
used 200 training vectors while considering the execution
time. Each of learning update was performed by a batch
including 100 training vectors.

Table 1. Design descriptions

DUV #FF #Logic #CovPnt
fifo 283 1463 566
uart 28 181 56

simple_spi_top 132 895 264
usb_phy 98 503 196

Table 2. Learning parameters for experiments

DUV Number of units
of each layer

Number
of learnings

Time
(s)

fifo 150,140,110,130,70 2000 131
uart 150,180,150,150,60 5000 504

simple_spi_top 300,250,150,150,80 2500 421
usb_phy 300,250,150,150,60 2500 402

B. Ranking patterns

The experimental results are shown in Table 3. Since the

experiments have random nature, we show three results for
each design. N is the number of patterns that cover each
hard-to-cover point among 1,000 different randomly
generated patterns. Each pattern consists of signal values for
50 cycles. We chose, as each hard-to-cover point, cover
points with fewest coverage among the points covered more
than or equal to 10 times in the random simulation. Table 3
shows the number of patterns that cover each hard-to-cover
point and the ratio when stopped at half the number of
simulations for the random patterns and ranked patterns.

Some experimental results for each design are shown in
Figure 6. It shows distribution of patterns that cover the
chosen hard-to-cover point in the ranked 1,000 simulation

- 338 -

patterns. Table 3 and Figure 6 show that more of patterns
covering the target cover points can be found in the top 50%
of the ranked simulation patterns.

Table 3. The experimental results

DUV N
random patterns ranked patterns

included
in 50% ratio included

in 50% ratio

fifo
30 12 0.400 27 0.900
29 18 0.621 26 0.897
18 7 0.389 15 0.833

uart
19 11 0.579 17 0.895
19 8 0.421 16 0.842
20 9 0.450 16 0.800

simple_spi_top
20 13 0.650 17 0.850
24 9 0.375 19 0.792
26 13 0.500 20 0.769

usb_phy
16 8 0.500 14 0.875
21 12 0.571 17 0.810
13 8 0.615 10 0.769

(a) fifo

(b) uart

�
(c) simple_spi_top

(d) usb_phy

Figure 6. Distribution of input patterns covering hard-to-cover point.
� is the simulation pattern that covered the chosen each
hard-to-cover point. Patterns closer to 0 have higher ranks.

C. Filtering patterns

Based on these experimental results, we performed other
experiments in which input patterns are filtered using a
threshold value. That is, we set the 500th (50%) and 200th
(20%) reconstruction errors as the threshold values and use
them as filters. Note that those threshold values can be
obtained by calculating reconstruction errors for randomly
generated patterns without performing simulation.

We prepared 1,000 filtered input patterns, and 1,000
randomly generated patterns. The experimental results are
shown in Table 4. The “filtered patterns” shows how many
times each hard-to-cover point is covered when performed
the simulation using 1,000 different filtered patterns. The
“random patterns” shows how many times each hard-to-cover
point is covered when performed the simulation using 1,000
different random patterns. The “filtering time” shows the
execution time of the filtering. The “simulation time” shows
the execution time of the simulation. “50%” shows the results
with 500th reconstruction error as the threshold values for
filters. “20%” shows the results with 200th reconstruction
error as the threshold values for filters. Similarly, Table 5
shows the results of same experiments that we set the number
of patterns to 5,000.

Table 4 and 5 show that the patterns by filtering can cover
each hard-to-cover point more than random patterns in
general.

Table 4. Results of filtering patterns when the number of
simulations is 1,000.

DUV
Filtered
patterns Random

patterns

Filtering
time (s) Simulation

time (s) 50% 20% 50% 20%

fifo
38 48 24

0.57 1.10 125 46 38 18
39 34 18

uart
35 38 19

0.70 1.42 109 36 40 12
41 40 21

simple_spi_top
49 72 16

1.09 2.26 129 45 48 14
66 60 14

usb_phy
29 27 16

1.09 2.17 130 27 27 14
33 28 14

Table 5. Results of filtering patterns when the number of
simulations is 5,000.

DUV
Filtered
patterns Random

patterns

Filtering
time (s) Simulation

time (s) 50% 20% 50% 20%

fifo
171 246 118

2.20 5.28 629 165 252 107
144 240 114

uart
176 227 111

2.26 6.27 549 149 229 109
135 227 110

simple_spi_top
225 301 132

4.26 10.60 650 207 273 124
206 286 142

usb_phy
125 153 78

4.68 10.18 655 123 164 69
128 153 80

- 339 -

Table 6 and 7 shows the number of the simulations using
the random patterns that could perform while performing
deep learning + filtering + filtered simulation. Table 6 shows
the experimental results using 1,000 filtered simulation
patterns. Table 7 shows the experimental results using 5,000
filtered simulation patterns. The “time” is the execution time
of deep learning + filtering + filtered simulation. The
“number of random patterns” is the number of the random
patterns used in the simulation during the “time”. The
“number of covered” shows how many times each
hard-to-cover point is covered when the simulation using the
random patterns was performed.

Comparing the “filtered pattern” of Table 4 with the
“number of covered” of Table 6, it can be seen that the
simulation using the random patterns is more efficient than
the proposed method since the deep learning takes time.
However, comparing the “filtered pattern” of Table 5 with
the “number of covered” of Table 7, it can be seen that the
proposed method is more efficient than the simulation using
the random patterns. Table 4, 5, 6 and 7 show that the
proposed method is more effective when the number of
simulations is large since the execution time of deep learning
is fixed.

Table 6. Results of the simulation using the random patterns while
performing the proposed method using 1,000 filtered patterns.

DUV Time (s) Number of
random patterns

Number of
covered

fifo 257
2111 43
2101 49
2079 43

uart 614
5684 129
5785 131
5723 133

simple_spi_top 552
4364 82
4344 120
4342 117

usb_phy 534
4130 62
4140 67
4135 57

Table 7. Results of the simulation using the random patterns while
performing the proposed method using 5,000 filtered patterns.

DUV Time (s) Number of
random patterns

Number of
covered

fifo 765
6121 128
5979 127
5923 127

uart 1059
9663 216
9169 211
9345 215

simple_spi_top 1081
8431 186
8187 183
8109 183

usb_phy 1067
7887 107
8094 114
7924 117

VII. Conclusions

In this paper, we proposed a method that learns features of

simulation patterns by deep learning and finds effective new

simulation patterns. The experimental results show that the
proposed method is efficient in finding effective simulation
patterns. We can expect that hard-to-cover points can be
covered more frequently and more quickly than simple
random patterns by applying the proposed method to the
input patterns generation in coverage-driven verification. The
proposed method is more effective when the number of
simulations is large since the execution time of deep learning
is fixed. Moreover, in case of performing the regression
verification, the proposed method is more efficient since the
deep learning is performed only once.

In future it is necessary to evaluate the effectiveness of the
proposed method in more realistic and larger settings of
coverage-driven verification, to try using another machine
learning method such as Autoencoder, to improve the
execution time of deep learning and to make it possible to
choose more than one hard-to-cover point.

References

[1] A. Krizhevsky, I. Sutskever, G. H. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,”
Advance in neural information processing systems,
pp.1097-1105, 2012.

[2] C. Ioannides, K. Eder, “Coverage-Directed Test Generation
Automated by Machine Learning -- A Review,” ACM Trans.
on Design Automation of Electronic Systems, vol.17, no. 1,
pp. 7:1-7:21, 2012.

[3] G. E. Dahl, D. Yu, Li. Deng, A. Acero, “Context-Dependent
Pre-Trained Deep Neural Networks for Large-Vocabulary
Speech Recognition,” IEEE Trans. Audio, Speech, &
Language Process., Vol.20, No.1, pp.30-42, 2012.

[4] G. E. Hinton, “A Practical Guide to Training Restricted
Boltzmann Machines,” Momentum, Vol. 9, No.1, p.926,
2010.

[5] I. Wagner, V. Bertacco, T. Austin, “Microprocessor
Verification via Feedback-Adjusted Markov Models,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol.26, no.6, pp.1126-1138, 2007.

[6] P. Vincent, H. Larochelle, Y. Bengio, P-A. Manzagol,
“Extracting and Composing Robust Features with Denoising
Autoencoders,” in Proceedings of the 25th international
conference on Machine learning, pp. 1096-1103, 2008.

[7] S. Fine, A. Ziv, “Coverage directed test generation for
functional verification using Bayesian networks,” Design
Automation Conference, pp. 286-291, 2003.

[8] S. M. Plaza, I. L. Markov, V. Bertacco, “Toggle: A
Coverage-guided Random Stimulus Generator,” Int’ l
Workshop on Logic Synthesis, pp.351-357, 2007.

[9] S. Shyam, V.Bertacco, “Distance-Guided Hybrid Verification
with GUIDO,” Proceedings of the conference on Design,
automation and test in Europe, p.1211-1216, 2006.

[10] Y. Katz, M. Rimon, A. Ziv and G. Shaked, “Learning
microarchitectural behaviors to improve stimuli generation
quality,” Design Automation Conference, pp. 848-853, 2011.

[11] Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle,
“Greedy Layer-Wise Training of Deep Networks,” Advances
in neural information processing systems, Vol. 19, p. 153,
2007.

- 340 -

