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Abstract -  Verification of RT/gate-level designs has been a 
long-standing bottleneck in the process of hardware design. 
Mainly simulation-based verification has been used for this 
purpose, and recently, coverage-driven verification has been 
used. In coverage-driven verification, it is important that 
each cover point is covered with fairly a large number of 
input patterns. Therefore, generating many new simulation 
patterns, in particular, for hard-to-cover points is necessary. 
We propose a method to learn features of simulation 
patterns by machine learning, that is, deep learning, and to 
find simulation patterns covering a certain cover point which 
is hard to be covered, based on reconstruction errors. The 
experimental results show that the proposed method is 
efficient in finding effective simulation patterns.  
 
 

I. Introduction 
 

Verification of RT/gate-level designs has been a 
long-standing bottleneck in the process of hardware design. 
There are two types of verification methods, which are 
formal verification and simulation-based verification. 

In simulation-based verification, simulation patterns are 
prepared manually or automatically. Automatic simulation 
pattern generation is desirable because manual simulation 
pattern generation takes a high cost. However, simple random 
pattern generation cannot verify rare corner cases effectively. 
In simulation-based verification, we use a metric called 
coverage that is a measure of progress of verification.  

Coverage-driven verification aims improvement of 
coverage. It performs simulation first, and then it generates 
input patterns that are expected to improve coverage based on 
the result of coverage analysis, and repeat these processes. In 
coverage-driven verification, it is important that each cover 
point is covered with fairly a large number of input patterns. 
Therefore, generating many new simulation patterns, in 
particular, for hard-to-cover points is necessary. In this paper, 
we propose a method that learns features of simulation 
patterns by machine learning, that is, deep learning, and finds 
effective new simulation patterns among randomly generated 
patterns. 

Deep learning is a machine learning technique using 
multilayer neural networks, which has been attracting 
attention recently. It has been applied to image recognition 

[1], speech recognition [3] and so on, and it shows higher 
performance than the other machine learning techniques. We 
apply it to find effective input patterns for coverage-driven 
verification. 

Given an input vector, a neural network propagates values 
from the input nodes to the output nodes, depending on the 
parameters such as weights and biases given to nodes in the 
network. We consider training vectors, which is usually 
composed of an input vector and a target vector we obtain as 
an observation. Given a set of training vectors, that is, a 
training set, learning a network means tuning the parameters 
so that the network fits the training set most under some 
score such as log-likelihood. In deep learning, we perform 
“pre-training” to find better parameters. When we use a 
pre-training method based on Restricted Boltzmann Machine 
(RBM) [4,11], we can learn abstract features of a training set. 
More importantly, given an input vector, RBM-based 
approach can give so called a “reconstruction vector”. The 
input vector can be propagated toward the output layers of 
the network, and then, can be propagated backward to the 
input layer, which results in a reconstructed vector. The 
difference between the original vector and the reconstructed 
vector is the reconstruction error. 

We use this deep learning method, in particular, 
pre-training and reconstruction errors to generate input 
patterns in coverage-driven verification, in order to cover 
hard-to-cover points more frequently. First, we perform 
simulation once with a number of random patterns and learn 
the features of the simulation patterns covering the target 
cover points using deep learning in advance. Next, we 
generate simulation patterns randomly and we give the 
patterns to the multilayer neural network. Then, we calculate 
their reconstruction errors and determine the ranking of the 
patterns based on the reconstruction errors. Finally, we select 
the patterns with ranks higher than a given threshold, and use 
them for simulation. Then, we can expect that hard-to-cover 
points can be covered more frequently and more quickly than 
simple random patterns. We implemented the above proposed 
method and investigated its effectiveness through 
experiments. 
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II. Related Works and Contribution 
 
There are many studies on application of machine learning 

techniques for coverage-driven verification systems. The 
relations between the simulation patterns and coverage points 
are learned using Bayesian networks in [7,10], inductive 
logic programming in [2] and Markov models in [5]. In these 
approaches, based on the learned results, we can generate 
input patterns effective to cover target cover points. The 
above approaches, however, require to specify manually 
which features such as types of instructions or signal 
transition probabilities should be learned. In other words, 
these approaches cannot learn input patterns directly. 

On the other hand, SAT-based approaches [8,9] do not 
require to give features explicitly, but the computational costs 
are high, because it must apply SAT solvers to designs 
represented as boolean expressions. In [8], only 
combinational circuits were handled. In [9], heuristic 
approaches specific to microprocessors were introduced. 

The contributions of the method we propose are as 
follows: 

1. It does not require to specify features to be focused 
on at learning. It can handle input patterns directly. 
This means our method requires less of manual work. 

2. It does not deal with boolean expressions, but only 
input patterns and their corresponding coverage. This 
implies our method can scale better. 

 
 

III. Deep Learning 
 
A. Deep Learning 
 

Deep learning is a machine learning technique using 
multilayer neural networks as shown in the Figure 1. Since 
the number of layers is large, neural networks of this type can 
extract features hierarchically. Its power of expression is 
much stronger than classical neural networks of three layers 
and it can handle more complex data. 

The characteristic of recognition using deep learning is to 
perform extraction of features from training sets by 
unsupervised learning automatically. This unsupervised 
learning is called pre-training. By performing pre-training, 
multilayer neural networks have come to be able to perform 
learning effectively. 

 

  
Figure 1. Multilayer Neural Network 
 
Specifically, in pre-training, it learns the parameters for 

each of succeeding two layers from the input layer. Mainly, 

RBM (Restricted Boltzmann Machines) [4,11] or 
Autoencoder [6] is used for the learning of this step. Here, we 
use RBM in pre-training. In fine-tuning, the network 
performs supervised learning using the parameter obtained by 
pre-training. Mainly, backpropagation is used for the learning 
of this step. 

 
1) Neural Network Architecture 

 
Figure 2. Neural Network 
 

 
Figure 3. Configuration of unit 
 
  Figure 2 shows a classical three-layer neural 
network underlying deep learning. An input vector is 
given to the input layer. Figure 3 shows a 
configuration of each unit. �� is the output of a unit, 
and is calculated as follows: 
 

�� � �����

�

� �� 

�� � ������ 
 

where �� is an input to a unit, ��� is a connection 
weight between units, �� is the bias of a unit.�� is 
called a sigmoid function, which is defined as follows: 
 

���� �
�

� � �������
 

 
  In the learning process, a set of training vectors, or 
a training set is given, and the parameters are tuned to 
fit the set under score such as log-likelihood. A 
training vector is processed one by one, where the 
parameters of the network are updated for each 
training vector. Since handling the vector one by one 
is costly, batch learning is often used, where an update 
is done for a subset of training vectors, called a batch, 
instead of each training vector. Number of learnings 
refers to the number of the updates. 
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2) Restricted Boltzmann Machine 
 

 
Figure 4. Restricted Boltzmann Machine 
 
  In pre-training, each of successive two layers of a 
multilayer neural network is regarded as an RBM 
(Restricted Boltzmann Machine), and all of the RBMs 
are learned from the input layers. Figure 4 shows a 
configuration of an RBM. An RBM has visible and 
hidden units, and consists of a matrix of weights 
� � ����� , where ���  is associated with the 
connection between visible unit �� and hidden unit 
��, as well as bias weights �� for a visible unit and �� 
for a hidden unit. Given these, the energy for 
configuration ��� �� is defined as: 
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where � � ��� ���� is a set of parameters of the 
network. As in general boltzmann machines, 
probability distributions over visible and hidden 
vectors are defined in terms of the energy function: 
 

������ �� �
��������������

����������������

 (1) 
 

  From Eq. 1, we can obtain the following: 
 
���� � ���� �� � ���� � ������ � (2) 

and 
���� � ���� �� � ���� � ������ �  (3) , 

 
where � denotes the sigmoid function. 
  In learning of an RBM, input vectors only for 
visible units are given as a training set. By using Eq. 2 
and Eq. 3 alternately, the parameters are adjusted so 
that they maximize the likelihood of �. 
  Update equation of � is as follows: 
 

� � � � �
�����

��
�� 

 
where �  is called a learning rate, which is the 
weight of update of �. ���� is the log-likelihood 
of marginal distribution����� �� � ���� �� ���  . 
 

3) Pre-training 
 
  The pre-training is performed as follows: 

(i) Learn the parameters between the first two 

layers including the input layer using the 
training set by RBM. 

(ii) Give the value of the hidden units obtained in 
(i) to the next two layers and perform learning 
by RBM. 

(iii) Repeat (ii) for each layer. 
 
  An RBM learns the parameters in order to 
approximate the distribution of the visible layer to the 
distribution of the training set. In other words, the 
parameters are learned so that the hidden layer 
represents the feature of the training set of visible 
layer. Therefore, the network can extract features of 
the training set by performed pre-training. 
 

B. Reconstruction Error 
 
In the proposed method, we perform only pre-training by 

RBM, without performing fine-tuning. The reconstruction 
vector represents how the multilayer neural network 
recognizes the input vector. Therefore, the input vector 
having a small reconstruction error has the feature that is 
similar to the training vectors. 

A reconstruction vector and a reconstruction error are 
obtained as follows. After the pre-training is finished, we 
give an input vector � � ���� ���� � ��� to the multilayer 
neural network. The value of each unit can be obtained 
stochastically by forward propagation (Eq. 2). After the 
input vector reaches the final layer, the value of each unit 
can be obtained stochastically by backward propagation 
(Eq. 3). 

The vector �� � ����� ����� � ���� that is obtained at the 
input layer is referred to as the reconstruction vector of the 
input vector � � ���� ���� � ��� . We compare ��  and � 
by the following equation (the reconstruction error). 

 
������	�
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� ��� � ����
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IV. Coverage and Coverage-Driven Verification 
 
 

 
Figure 5. A flow of coverage-driven verification 
 

Coverage-driven verification is one of hardware design 
verification methods, which aims improvements of coverage. 
Figure 5 shows a flow of coverage-driven verification. 
Coverage-driven verification performs simulation first, and 
then it generates input patterns that are expected to improve 

- 337 -



coverage based on the result of coverage analysis, and repeat 
these processes. 

Coverage is a measure for progress of verification. In this 
study, we use toggle coverage that is one of code coverage 
metrics. Cover points of toggle coverage are signals in the 
design, where transitions from 0 to 1 and from 1 to 0 in 
signals are checked. We distinguish the transition 0 to 1 from 
the transition 1 to 0, and treat them as distinct corner points. 
Toggle coverage indicates how far the given design has been 
activated by simulation. 

 
 

V. Finding Effective Simulation Patterns 
 
The proposed method does not perform fine-tuning for the 

neural network and only performs pre-training in deep 
learning. We perform ranking of the reconstruction errors for 
randomly generated simulation patterns and find effective 
simulation patterns. 

The flow of the procedure is as follows: 
1) Pre-training the network. 

(i) Choose one cover point that was hard to be 
covered on the basis of the results of random 
simulation. 

(ii) Perform pre-training of a multilayer neural 
network using the patterns that cover the cover 
point selected in (i). 

 
2) Ranking input patterns. 

(i) Generate input patterns randomly. 
(ii) Give the patterns to the multilayer neural 

network and calculate their reconstruction errors. 
(iii) Rank the patterns in an ascending order of their 

reconstruction errors. 
 
3) Filtering patterns. 

(i) Filter the random patterns based on threshold of 
reconstruction errors. 

(ii) Use the simulation patterns that passed the filter 
to simulation. 

 
We compress the simulation patterns in order to perform 

deep learning more quickly and easily. We compressed input 
vectors of multi-bit to those of one-bit by using only the most 
significant bits. Then, we performed experiments similar to 
the next section and compared the case of compressing with 
the case of not compressing. As a result, there was no big 
difference between them. Therefore, in this study, we 
compressed the simulation patterns using only the most 
significant bits.  

 
 

VI. Experimental Results 
 
All experiments were performed on an Intel 

Corei5-4590@3.30GHz with 24GB RAM. We implemented 
a deep learning algorithm using C language. 

 

A. Experiments  
 

We evaluate the proposed method using the four designs 
from the IWLS 2005 benchmarks shown in Table 1. #FF is 
the number of flip-flops and #Logic is the number of logic 
elements, #CovPnt is the number of all the cover points. We 
set coverage points at the output of all flip-flops in the 
designs. We distinguish a transition from 0 to 1 and that from 
1 to 0. Therefore, #CovPnt is twice as many as #FF. Table 2 
shows the designs, the number of units of each layer, the 
number of learnings in pre-training and the execution time of 
deep learning, respectively. In any case, the number of cycles 
of simulation was 50, the number of layers of the multilayer 
neural networks was 5, the number of training vectors was 
200 and the learning rate was 0.1.  

The number of training vectors was decided by an 
experiment. Specifically, we performed learning of a 
multilayer neural network by changing the number of training 
vectors for design of fifo. As a result, the multilayer neural 
network that has number of units of each layer is 150, 140, 
110, 130, 70 can extract features of simulation patterns when 
the number of training vectors is 200. However, it could not 
extract features without increasing the number of units of 
each layer when the number of training vectors is 500. The 
learning time becomes unrealistically large. Therefore, we 
used 200 training vectors while considering the execution 
time. Each of learning update was performed by a batch 
including 100 training vectors. 

 
Table 1. Design descriptions 

DUV #FF #Logic #CovPnt 
fifo 283 1463 566 
uart 28 181 56 

simple_spi_top 132 895 264 
usb_phy 98 503 196 

 
Table 2. Learning parameters for experiments 

DUV Number of units 
of each layer 

Number 
of learnings 

Time 
(s) 

fifo 150,140,110,130,70 2000 131 
uart 150,180,150,150,60 5000 504 

simple_spi_top 300,250,150,150,80 2500 421 
usb_phy 300,250,150,150,60 2500 402 

 
B. Ranking patterns 

 
The experimental results are shown in Table 3. Since the 

experiments have random nature, we show three results for 
each design. N is the number of patterns that cover each 
hard-to-cover point among 1,000 different randomly 
generated patterns. Each pattern consists of signal values for 
50 cycles. We chose, as each hard-to-cover point, cover 
points with fewest coverage among the points covered more 
than or equal to 10 times in the random simulation. Table 3 
shows the number of patterns that cover each hard-to-cover 
point and the ratio when stopped at half the number of 
simulations for the random patterns and ranked patterns. 

Some experimental results for each design are shown in 
Figure 6. It shows distribution of patterns that cover the 
chosen hard-to-cover point in the ranked 1,000 simulation 
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patterns. Table 3 and Figure 6 show that more of patterns 
covering the target cover points can be found in the top 50% 
of the ranked simulation patterns. 

 
Table 3. The experimental results 

DUV N 
random patterns ranked patterns 

included 
in 50% ratio included 

in 50% ratio 

fifo 
30 12 0.400 27 0.900 
29 18 0.621 26 0.897 
18 7 0.389 15 0.833 

uart 
19 11 0.579 17 0.895 
19 8 0.421 16 0.842 
20 9 0.450 16 0.800 

simple_spi_top 
20 13 0.650 17 0.850 
24 9 0.375 19 0.792 
26 13 0.500 20 0.769 

usb_phy 
16 8 0.500 14 0.875 
21 12 0.571 17 0.810 
13 8 0.615 10 0.769 

 
 

 
(a) fifo 

 
(b) uart 

�
(c) simple_spi_top 

 
(d) usb_phy 
 
Figure 6. Distribution of input patterns covering hard-to-cover point. 
�  is the simulation pattern that covered the chosen each 
hard-to-cover point. Patterns closer to 0 have higher ranks. 
 
 
 

C. Filtering patterns  
 

Based on these experimental results, we performed other 
experiments in which input patterns are filtered using a 
threshold value. That is, we set the 500th (50%) and 200th 
(20%) reconstruction errors as the threshold values and use 
them as filters. Note that those threshold values can be 
obtained by calculating reconstruction errors for randomly 
generated patterns without performing simulation. 

We prepared 1,000 filtered input patterns, and 1,000 
randomly generated patterns. The experimental results are 
shown in Table 4. The “filtered patterns” shows how many 
times each hard-to-cover point is covered when performed 
the simulation using 1,000 different filtered patterns. The 
“random patterns” shows how many times each hard-to-cover 
point is covered when performed the simulation using 1,000 
different random patterns. The “filtering time” shows the 
execution time of the filtering. The “simulation time” shows 
the execution time of the simulation. “50%” shows the results 
with 500th reconstruction error as the threshold values for 
filters. “20%” shows the results with 200th reconstruction 
error as the threshold values for filters. Similarly, Table 5 
shows the results of same experiments that we set the number 
of patterns to 5,000. 

Table 4 and 5 show that the patterns by filtering can cover 
each hard-to-cover point more than random patterns in 
general. 
 
Table 4. Results of filtering patterns when the number of 
simulations is 1,000. 

DUV 
Filtered 
patterns Random 

patterns 

Filtering  
time (s) Simulation 

time (s) 50% 20% 50% 20% 

fifo 
38 48 24 

0.57 1.10 125 46 38 18 
39 34 18 

uart 
35 38 19 

0.70 1.42 109 36 40 12 
41 40 21 

simple_spi_top 
49 72 16 

1.09 2.26 129 45 48 14 
66 60 14 

usb_phy 
29 27 16 

1.09 2.17 130 27 27 14 
33 28 14 

 
Table 5. Results of filtering patterns when the number of 
simulations is 5,000. 

DUV 
Filtered 
patterns Random 

patterns 

Filtering  
time (s) Simulation 

time (s) 50% 20% 50% 20% 

fifo 
171 246 118 

2.20 5.28 629 165 252 107 
144 240 114 

uart 
176 227 111 

2.26 6.27 549 149 229 109 
135 227 110 

simple_spi_top 
225 301 132 

4.26 10.60 650 207 273 124 
206 286 142 

usb_phy 
125 153 78 

4.68 10.18 655 123 164 69 
128 153 80 
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Table 6 and 7 shows the number of the simulations using 
the random patterns that could perform while performing 
deep learning + filtering + filtered simulation. Table 6 shows 
the experimental results using 1,000 filtered simulation 
patterns. Table 7 shows the experimental results using 5,000 
filtered simulation patterns. The “time” is the execution time 
of deep learning + filtering + filtered simulation. The 
“number of random patterns” is the number of the random 
patterns used in the simulation during the “time”. The 
“number of covered” shows how many times each 
hard-to-cover point is covered when the simulation using the 
random patterns was performed. 

Comparing the “filtered pattern” of Table 4 with the 
“number of covered” of Table 6, it can be seen that the 
simulation using the random patterns is more efficient than 
the proposed method since the deep learning takes time. 
However, comparing the “filtered pattern” of Table 5 with 
the “number of covered” of Table 7, it can be seen that the 
proposed method is more efficient than the simulation using 
the random patterns. Table 4, 5, 6 and 7 show that the 
proposed method is more effective when the number of 
simulations is large since the execution time of deep learning 
is fixed. 
 
Table 6. Results of the simulation using the random patterns while 
performing the proposed method using 1,000 filtered patterns. 

DUV Time (s) Number of 
random patterns 

Number of 
covered 

fifo 257 
2111 43 
2101 49 
2079 43 

uart 614 
5684 129 
5785 131 
5723 133 

simple_spi_top 552 
4364 82 
4344 120 
4342 117 

usb_phy 534 
4130 62 
4140 67 
4135 57 

 
Table 7. Results of the simulation using the random patterns while 
performing the proposed method using 5,000 filtered patterns. 

DUV Time (s) Number of 
random patterns 

Number of 
covered 

fifo 765 
6121 128 
5979 127 
5923 127 

uart 1059 
9663 216 
9169 211 
9345 215 

simple_spi_top 1081 
8431 186 
8187 183 
8109 183 

usb_phy 1067 
7887 107 
8094 114 
7924 117 

 
 

VII. Conclusions 
 
In this paper, we proposed a method that learns features of 

simulation patterns by deep learning and finds effective new 

simulation patterns. The experimental results show that the 
proposed method is efficient in finding effective simulation 
patterns. We can expect that hard-to-cover points can be 
covered more frequently and more quickly than simple 
random patterns by applying the proposed method to the 
input patterns generation in coverage-driven verification. The 
proposed method is more effective when the number of 
simulations is large since the execution time of deep learning 
is fixed. Moreover, in case of performing the regression 
verification, the proposed method is more efficient since the 
deep learning is performed only once. 

In future it is necessary to evaluate the effectiveness of the 
proposed method in more realistic and larger settings of 
coverage-driven verification, to try using another machine 
learning method such as Autoencoder, to improve the 
execution time of deep learning and to make it possible to 
choose more than one hard-to-cover point. 
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