

An Efficient Character Generation Algorithm for High-
Throughput E-Beam Lithography

Shih-Ting Lin1, Hong-Yan Su1, Oscar Chen2, and Yih-Lang Li1

Department of Computer Science, National Chiao Tung University1

AnaGlobe Technology, Inc.2

ABSTRACT
E-beam lithography has been one of promising next generation
lithography for 7nm and below technology nodes. Among vari-
ous electron-beam lithography features, character projection
(CP) attracts users because complex patterns can be printed in
one e-beam shot. However, we still face severe challenges of gen-
erating characters on interconnection layers due to its pattern
diversity. In this paper, we proposes a multi-intersection-level
(MIL) layout that can efficiently capture the relationships be-
tween nearby objects including the spacing between them. The
inflated layer reduces the problem instance size for identifying
the frequently used patterns while the intersection layers help
in clipping windows to obtain ideal character set. Experimental
results show that the proposed methodology can efficiently yield
the frequently used character set with up to 93.3% and 81.23%
covering rate in via layer and metal layer. Besides, for a panel
layout, a set of frequently used characters to reach 100% cov-
ering rate is successfully identified.

1. INTRODUCTION
As one of the promising next generation lithography, E-beam li-

thography (EBL) has the advantage on the fabrication of sub-na-
nometer technology nodes because it can easily focuses on nanome-
ter diameter. Another E-beam application is for the manufacturing
of retina-resolution display panel, which has higher pixel density
than traditional ones. However, the drawback of low throughput
makes EBL hard to be used on mass production, and several tech-
niques such as variable shaped beam (VSB) or character projection
(CP) are employed to improve throughput of E-beam direct write
(EBDW). Among these techniques, CP is widely adopted because
complex shapes can be printed in one E-beam shot with the pro-
vided templates, called character. Hence, the number of required
E-beam shots can be reduced in orders of magnitude and improve
throughput drastically.

To identify frequently used patterns (FUPs) in a layout as char-
acters can increase the benefit of CP-EBL and minimize the number
of required E-beam shots. For example, Takeshi Fujino et al convert
complex standard cells to be sets of basic standard cells, each of
which becomes a character [1]. And then the majority components
of a standard cell based design can be fabricated with CP-EBL.
However, only few works discuss how to investigate FUPs on in-
terconnect layers of a layout because of the wide diversity of pattern
shapes on these routing layers, and most of the works focus on pack-
ing characters in a stencil [2]-[4]. Fig. 1 illustrates an example of
challenges caused by pattern diversity. Fig. 1(a) shows a layout for
identifying corresponding characters for CP-EBL. One intuitive
method to investigate FUPs is placing the character window of de-
sired pattern size on anywhere of the layout, and we can collect all
possible patterns according to every located window. After exam-
ining all possible patterns and their repetition numbers, we can con-
clude a set of desired patterns to improve the throughput of EBDW.
Examples in Fig. 1(b) and 1(c) show that, as we change the

location of character window, the identified patterns and their rep-
etition numbers also change as well. Since each polygon in a layout
only needs to be written once, the EBDW cannot be conducted at
the same location twice. The intersection of the polygons in any two
patterns used by EBDW should be empty. Apparently, it is infeasi-
ble to enumerate all possible patterns in a layout; furthermore, most
of the patterns may not be a repetitive one such as Fig. 1(c).

Because of the challenge of pattern diversity during investigating
FUPs in a layout, previous works have different limitations on their
proposed methodologies. The assumption is made that every wire
in a layout has the same direction in [5][6]. This limitation is
adopted in the advanced technology for one-dimensional (1D) IC
layout, but the panel layouts are not limited to 1D layouts. Via pat-
terns in [5] cannot contain more than three vias theoretically, and
via patterns are one-dimensional arrays in [6]. These limitations not
only diminish the diversity of pattern shapes but also restrict the
freedom of generating characters for two-dimensional layouts.
Masahiro Shoji, et al focus on the mask patterns after OPC, and they
fracture each polygon into several small rectangles [7]. Adjacent
rectangles are then re-grouped to form a character. Efficiency issue
caused by complex rectangle combinations may hinder the applica-
tion on interconnection layers. Rimon Ikeno et al focus on generat-
ing characters for non-Manhattan polygons such that the numbers
of trapezoids using VSB can be reduced while still improving line-
edge quality [8].

In this work, we propose a multi-intersection-level (MIL) layout
that can efficiently capture the relationships between nearby objects
including the spacing between them. Each polygon is inflated with
a fixed value first. After that, all inflated polygons are consolidated
together by performing a geometrical OR operation on all inflated
polygons. Meanwhile, intersection operations are performed on all
inflated polygons such that the intersection result of any i polygons
is stored in the i-th level of MIL layout. With this scheme, exact
pattern matching can be accelerated on the MIL layout due to the
reduced problem instance size, and the FUPs also can be obtained.
Meanwhile, the MIL layout keeps the regions where most inflated
polygons overlap. If the FUPs is larger than the user-defined char-
acter window, the regions where most inflated polygons overlap are
the ideal locations for the centers of clipping window. The fre-
quently used characters (FUCs) can then be calibrated, and the re-
petitive locations for each FUC can be identified through conduct-
ing an exact matching on the entire layout. Experimental results in-
dicate that the generated characters can achieve 100% covering rate

Fig. 1. Pattern locations is the critical challenge of investigating
frequently used patterns. (a) Original layout; (b) one possible pat-
tern can find two occurrences; (c) another patterns with the same
size has only one occurrence.

 (a) (b) (c)

SASIMI 2019 ProceedingsR2-10

- 126 -

for a panel layout, and up to 99.7% of the layout can be printed with
three generated characters. As for the interconnection layers, we can
have 93.3% and 81.23% covering rates on via and metal layers, re-
spectively.

The remainder of this paper is organized as follows. Section 2
describes the problem formulation. Section 3 describes the concept
and associated properties of the proposed MIL layout. Then, we de-
tail the overall pattern generation algorithm with the proposed MIL
layout in section 4. In section 5, we present the experimental results,
and finally, we draw conclusions in section 6.

2. PROBLEM FORMULATION
 In previous works, character generation does not aim at identi-
fying a set of patterns, with which the entire layout can be printed.
They only try to identify a set of non-overlapping FUPs. In this
work, we follow the problem used in previous works.
Character generation problem: Given a layout, a maximum al-
lowable window size W, and the stencil area for placing characters,
the objective of character generation problem for CP-EBL is to find
a set of non-overlapping FUPs fitting W to decrease the number of
required E-beam shots. The remainder of the layout that is not con-
tained by FUPs is printed through VSB.

3. MIL-LAYOUT CONSTRUCTION
All previous exact matching algorithms work on original poly-

gons, which lacks the spacing information between vicinal poly-
gons. The fundamental concept of MIL layout is to inflate all poly-
gons with a fixed value such that vicinal polygons can be merged
as a larger polygon with the spaces among them as hidden infor-
mation. However polygon inflation cannot yield a one-to-one map-
ping between the original pattern and the inflated one. For instance,
the inflation with a value to the left pattern (one U-shaped polygon)
and the middle pattern (one L-shaped polygon and one rectangle) in
Fig. 2(c) yields the same outcome (the right polygon in Fig. 2(c)).
To avoid this confusion, each polygon is split into several non-over-
lapping rectangles, and the inflation of a polygon becomes an infla-
tion to its all rectangles. The first-level of a MIL layout is the union
of all inflated rectangles of all polygons. From the second level to
the end, the resultant layout at level i is the intersection of any i
inflated rectangles. With the match on the union layout at level 1
together with matches on the intersection layouts at the other levels
in a MIL layout, one-to-one mapping between the original pattern
and the inflated one can be confirmed.

Given a polygon p, let Rp = {rp1, rp2, … , rpk} be the rectangle list
obtained through splitting p into k non-overlap rectangles. Then,
polygon inflation in this work is defined as follows.
Definition 1. Given a polygon p and a desired inflation size d, the
inflation of p is IRp,d = { irp1, irp2, … , irpk }, where irpi is the inflation
of rpi with d, ∀ rpi ∈ Rp.
Definition 2. Let P be a pattern and P = {p1, p2, … , pn} be a set of
disjoint polygons in a layout. Then IPd = { IRp1,d, IRp2,d, … , IRpn,d}
is the polygons after inflation with a desired inflation size d.
Definition 3. A component can be a rectangle, a line, or a point.

Definition 4.
�,�

�
 = ⋂

�,�

��	
, ∀ i > 1, where ⋂

�,�

��	
 is the outcome

of applying an intersection operation on all pairs of components in

�,�

��	
 and

�,�

	
 = IPd. Then, the MIL layout LMIL = {
��

� = ⋃
�,�

�
,

1 � i � n}, where ⋃
�,�

�
 merges all rectangles in

�,�

�
 into poly-

gons and n is the last level to have non-empty
�,�

�
.

In this work, the intersection of two rectangles abutting along an
edge of their boundary yields a line while that of two rectangles
abutting at one of their corners yields a point. The intersection of a
line and a rectangle may yield a line. For instance, the pattern in Fig.
2(a) has seven rectangles, and two of their inflated rectangles abut
along one edge of their boundary. Fig. 2(b) shows the correspond-
ing LMIL of Fig. 2(a). Next, the equivalence of two MIL layouts is
defined as following.

Definition 5. Given LMIL and L’MIL, LMIL = L’MIL if
��

� =
′��

 � , ∀
i > 0 and |LMIL| = |L’MIL|.

Fig. 3 shows the algorithm of the MIL layout construction. In the
first step, we inflate all the polygons in P with size d and set

�,�

	

to be IPd (lines 1 ~ 2). Then, we iteratively apply intersection and
union operations on

�,�

�
 to obtain

�,�

��	
 and
��

� , respectively,

until
�,�

��	
 becomes empty or
��

� =
��

��	 (lines 3 ~ 7).

Proposition 1. Given P, d, and associated LMIL,
��

� defines the

regions where at least i rectangles in
�,�

	
 overlap.

Definition 6. Let
��

	 = {�	

	, . . . , ��
	 }, where ��

	 is the i-th poly-
gon in
��

	 . As we project the boundary of each ��
	 onto the other

levels (from level 2 to level |LMIL|), the components in each level are
also clustered into m groups. All components in LMIL are thus clus-
tered into m groups, i.e., LMIL = {C1, C2, … , Cm}, based on the
boundary projection from
��

	 , where Ci, named MIL component,
is the collection of polygon ��

	 and all the components in the other

Fig. 2. MIL layout construction example. (a) Polygon inflation and
rectangle intersection; (b) resultant LMIL; (c) polygon inflation can-
not yield one-to-one mapping.

(a)

(b) (c)

(a)

Φ�,�
�

Φ�,�
�

P

Φ�,�
	 /IPd

inflation

abut
edge

intersection
��

�

��

�

��

	

C1 C2

�	
	 ��

	

�	
�

��
�

��
�

LMIL

��	����

��
��	

�

Fig. 3. Algorithm for MIL layout construction

Algorithm 1. MIL_Layout_Construction
Input: A set of disjoint polygons P and inflation size d.
Output: Corresponding MIL layout LMIL.

1. IPd ← ∀ pj ∈ P inflate with d.
2. i ← 1 and Φ�,�

	 = IPd.
3. do
4.
��

� ← ⋃Φ�,�
� & Φ�,�

��	 ← ⋂Φ�,�
� .

5. i ← i + 1.
6. while (Φ�,�

� is not empty &
��

� !=
��

��)

- 127 -

levels that are within the regions defined by the boundary projection
of ��

	 onto the other levels.

Definition 7. ��

� represents the components of Ci in
��

� . Simi-

larly, |Ci| is the largest j that ��
�
 is not empty.

For example, the components of a 3-level LMIL in Fig. 3(b) are
classified into two groups, C1 and C2. In C1, �	

	 has an L-shape pol-
ygon while �	

� contains a rectangle and a line. Meanwhile, ��
	 has a

rectangle while ��
� contains a cross shape.

It is worth noting that a polygon and the same polygon in another
orientations may have different combinations of rectangle lists after
slicing a polygon into a set of rectangles. The resultant MIL layouts
of a polygon and its rotated one are thus also different. We have to
generate all possible rotating orientations, i.e. 0°, 90°, 180°, 270°,
for a MIL layout to achieve equivalent verification. If LMIL in any
orientation is equivalent to L’MIL, LMIL = L’MIL.

3.1 Inflation Size Determination
As inflation size changes, the MIL layout may also change. If a

MIL layout is sensitive to the change of inflation size, the quality of
proposed methodology may not be stable. Given two polygons p1
and p2, the distance between them is defined as a minimum inflation
size to make the merging of p1 and p2 happen (Fig. 4). In Fig. 4, the
minimum horizontal and vertical spacing between p1 and p2 are Dh
and Dv, respectively.
Definition 8. The distance between two polygons p1 and p2 is
max(Dh, Dv), where Dh and Dv are the minimum horizontal and ver-
tical distance between p1 and p2. The minimum inflation size re-
quired to merge p1 and p2 is then max(Dh, Dv) / 2.

Fig. 5 shows the statistics of polygon spacing of an industrial lay-
out with about 400,000 vias. Spaces larger than 23s are not shown
in Fig. 5, where s is the minimum metal spacing. The observation
from Fig. 5 implies that several peaks appear in this statistics, and
every peak represents the numbers of polygons that are to be
merged if the inflation size is set as the half of the corresponding
space. For example, 276630 pairs of polygons have the spacing of

7s. And then 276630 pairs of polygons are going to be merged in
the associated MIL layout if the inflation size is set to 7s / 2 = 3.5s.
Except these peak numbers, there are few number of polygon pairs

with the other spacing values. Based on this observation, given a
desired window size W, we can identify these peaks from polygon
spacing distribution.

Table I shows how inflation sizes affects the number of compo-
nents of a MIL layout. In this table, we can observe that the number
of components of a MIL layout does not have a major change as the
inflation size increases; on the contrary, it has little change for sev-
eral consecutive inflation sizes and then has a big change at some
points, i.e., 1.5s, 3.5s, and 5.5s. The points having big change con-
form to the peaks in Fig. 5 (3s, 7s, and 11s). The reason behind this
phenomenon is that vias are located on routing pitches, implying
that the spacing between vias is close to multiples of minimum
metal spacing. As a result, the candidates of inflation size are dis-
crete values at the peaks of polygon spacing distribution figure (Fig.
5) rather than continuous values.

4. CHARACTER GENERATION
In this section, we propose a methodology for FUP identification

in via layers. All vias in a layer have identical shape but the com-
plexity of via number is high. The MIL layout for a via layer is ben-
eficial to diminish the problem complexity since a polygon in

��

	 generally contains several vias and the space among them,
which implies to lower the problem complexity as solving the prob-
lem in
��

	 rather than original via set. Thus identifying FUPs in a
via layer is equivalent to finding frequently used polygons (FUPGs)
in
��

	 . For identifying FUPGs in
��

	 , a one-to-one mapping

from a pattern in a via-layer layout to a polygon in
��

	 is neces-

sary.
Lemma 1. Given two sets of via patterns, R and R’, containing non-
overlapping rectangles of equal size with a desired inflation size d,
the associated MIL layouts LMIL = L’MIL iff R = R’.

Proof. Obviously, if R = R’, LMIL = L’MIL. Next, we are going to
show that if LMIL = L’MIL, R = R’.

Since all inflated rectangles have the same dimension in width
and length, say w�w, we can derive the inflated rectangles from

��

� and
��

	 . The intersection of any two inflated rectangles

could be a rectangle, a line or a point. If the intersection outcome is
a rectangle rs, two cases are considered. The first case is that rs has
the dimension of w in width or length, and then two inflated rectan-
gles can be derived easily (Fig. 6(a)). The other case is that the di-
mension of rs in width and length is less than w. Although the in-
flated rectangles can be one of two cases, the result can be deter-
mined with the aid of
��

	 . As the intersection outcome is a line,
the situation is the same as that for the result that is a rectangle. As
the intersection outcome is a point, two original inflated rectangles
also can be derived with the aid of
��

	 . Since
��

	 =
′��

 	 , for
the case that we have to choose one out of two combinations of two

Fig. 4. Polygon spacing and inflate size.

p1

p2

Dh

Dvd

d

d
d

Fig. 5. Polygon spacing distribution.

0

100000

200000

300000

400000

500000

600000

150 250 388 485 622 742 878 1012 10983s 5s 7s 9s 11s 13s 15s 17s 19s 21s 23s

(3s, 197656)

(7s, 276630)
(11s, 293094)

(15s, 256522)

(19s, 333394)

(23s, 566266)

#polygon pairs

Polygon Spacing

(spacing, #polygon pairs)

d Lev 1 Lev 2 Lev 3 Lev 4 Lev 5 Lev 6
1.5s 348587 98828 0 0 0 0

2s 301781 95558 1687 0 0 0
2.5s 301610 95708 1706 0 0 0

3s 301435 95867 1719 0 0 0
3.5s 222704 66445 1603 1962 0 0

4s 209268 144411 43369 1859 16 0
4.5s 209122 144543 43392 1871 17 0

5s 208922 144588 43422 1887 17 0
5.5s 150274 95781 26742 1675 15 35

d L 1 L 2 L 3 L 4 L 5 L 6

Table I. Numbers of components of every level with respect to
inflation sizes

- 128 -

rectangles, the same combination has to be selected for both R and
R’ because
��

	 =
′��

 	 . Finally the equality between R and R’ is

obtained by choosing the same combination of two rectangles.

However, each frequently used polygon in
��

	 is not generally

fit to the user-defined window of size W. A window clipping
method is thus applied on each ��

	, which is larger than W, to locate
the center of each pattern window based on Ci. With these identified
window patterns, exact matching algorithm can be applied to the
original layout to identify the locations of all instances for every
window pattern.

4.1 Comparison Tree Classification
An intuitive method to investigate identical polygons in

��

	 (level-1 polygons) is to check the equivalence of every pair of

level-1 polygons. It requires time complexity at least O(m2), where
m is the number of level-1 polygons. A comparison tree is designed
to classify level-1 polygons into groups. Then, the equivalent
checking of two level-1 polygons is only required within the same
group.

The proposed comparison tree is a two-level tree. The level-1
polygons are categorized in the first level in terms of the numbers
of corner points of each polygon while the width and height of the
bounding box of each polygon are used in the second level. Then,
every leaf contains a list of level-1 polygons satisfying the key in
each level. A comparison tree example in Fig. 7 has five level-1
polygons C1 to C5 and ��

	 is illustrated in Fig. 7(a). The associated
comparison tree is shown in Fig. 7(b). Obviously, level-1 polygons
in two leaf groups are different, and thus the exact matching of two
polygons only happens in the same group. In this example we only
need to check the equivalence of C2 and C3, resulting in a consider-
able performance improvement.

4.2 Window Clipping and Pattern Recon-
struction

The FUPGs in
��

	 is generally larger than the user-defined win-

dow. Next step is to locate the window centers based on
��

|����|. For

example, Fig. 10(a) and 10(b) are a pattern and its associated MIL
layout LMIL, respectively. The square with blue dotted lines in Fig.
10(a) is the desired window of size W.

According to Proposition 1, the regions in the topmost layer of a
MIL layout involve the most inflated rectangles to overlap, which
implies locating a window center at the center of a component in
the topmost layer of LMIL can accommodate the most vias in the
window. Because the LMIL in Fig. 10(b) has four components in C3,
we have four clipping candidates as shown in Fig. 10(c) to 10(f).
With these clipping center candidates, pattern candidates fitting the
window of size W can be generated. Fig. 10(g) to 10(j) show that
the pattern candidates with respect to the clipping center candidates
shown in Fig. 10(c) to 10(f).

One important issue of generating pattern candidates is that some
rectangles are not totally inside the window and become clipped as
shown in Fig. 10(i) and 10(j). Herein, we consider a clipped rectan-
gle in a pattern as a buzz for pattern matching and try to make a
clipped rectangle un-clipped by window shifting (Fig. 8(a)) or just
remove the clipped rectangle if window shifting to make the clipped
rectangle un-clipped yields another newly clipped rectangle (Fig.
8(b)). Fig. 9 shows the proposed pattern generation algorithm.

4.3 FUC Generation Flow
Algorithm 3 (Fig. 11) is the overall flow of the proposed FUC

generation algorithm. Given the layout and the windows size W, the
proposed pattern generation algorithm (Algorithm 2) is firstly in-
voked to generate a set of FUPGs in
��

	 . Window clipping is then
applied to every FUPG to obtain a set of pattern candidates. Exact
pattern matching method [9] can thus be applied to the layout with
the generated pattern candidate set to find all repeated instances of
every pattern. Thereafter, the most FUP is identified and added to
the set of FUCs. All instances of this pattern are removed from the
layout and this pattern is also removed from the set of pattern can-
didates. This procedure continues until the number of characters is

Fig. 6. The derivation from non-empty intersection to two original
inflated rectangles. (a) and (b) the intersection is a rectangle; (c)
the intersection is a point.

(a) (b) (c)

Fig. 7. Example of comparison tree construction. (a) Polygons of
��

� ~ ��
�; (b) corresponding comparison tree.

(a)

(b)

4 6 8 10

(5,7) (6,7) (6,8) (9,8)
�! �	 ��, �� �"

number of vertices

bounding box
(width, height)

6

8��
	

6

8
��

	

5

7

�!
	

9

8
�"

	7
6

�	
	

Fig. 8. Pattern candidates in Fig. 10(i) and 10(j) require pattern
boundary adjustment to avoid rectangle clipping on the boundary.
(a) Shift the pattern boundary downwards; (b) expel the clipped
rectangle if window shifting to make the clipped rectangle un-
clipped yields another newly clipped rectangle.

 (a) (b)

Fig. 9. Algorithm of pattern generation.

Algorithm 2. Pattern_Generation
Input: A set of polygons P and window size W.
Output: A set of generated patterns.

1. Determine inflation size d with W.
2. MIL_Layout_Construction(P, d).
3. Construct comparison tree for LMIL.
4. Δ ← A set of frequently used polygons Ci ⊆ LMIL.
5. ℂ ← ∀ centers of ��

|���$|, where Ci ∈ Δ.
6. ∀ cj ∈ ℂ, do
7. Generate candidate pattern with respect to cj and W.
8. if exists incomplete rectangles, then
9. ∀ possible moving directions, do
10. make the most clipped rectangles un-clipped.
11. Remove remaining clipped rectangles.
12. Choose the pattern with the most rectangles.

- 129 -

larger than a threshold due to the limit of stencil area, or we cannot
extract more characters from the layout.

4.4 FUC Generation Flow for Metal Layers
and Panel Layouts

The rectangles in metal layers are much more diverse in length
than those in via layers. Thus the polygons of
��

	 in metal layers
are much larger than those in via layers; as a result, the frequency
to repeat a polygon of
��

	 in metal layers is not so high. The pro-
posed FUC generation flow for via layers is simplified for the ap-
plication to metal layers by removing the step of identifying FUPGs
in
��

	 . The flow is updated as follows. Instead of conducting win-
dow clipping on the FUPGs in
��

	 , window clipping is performed
on each polygon of
��

	 for metal layers to obtain a set of pattern
candidates. Next, the same procedure as that for via layers is in-
voked to obtain FUCs.

5. EXPERIMENTAL RESULTS
The algorithm is implemented using C++ on a Linux platform

with a 2.4 GHz quad-core CPU and 80 GB RAM. Three bench-
marks are adopted for the experiment. The first benchmark is a
module b15 from OpenSparc T1 design. The layout is synthesized
with 15nm Open Cell Library using SOC Encounter. The second
and the third benchmarks are industrial designs, where the second
benchmark is a layout in via and interconnection layers, and the
third benchmark is a panel layout. Table II shows the corresponding
numbers of polygons (psize), and the numbers of rectangles (rsize)
after slicing polygons to non-overlap rectangles.
In this experiment, we compute the character covering rate that is
evaluated as the percentages of all rectangles in a layout printed by
characters under different window sizes (W) and inflation sizes (d).
According to the maximum character size in previous work [6]

(maximum character size = 30 grids with a 1 pitch 1 pitch square
as one grid), we use three window sizes in this experiment, which
are 3, 5, and 7 pitches. Besides, the levels of a MIL layout and its
construction runtime increase quickly if d becomes too large. A
large d results in the worthless intersection among the rectangles
that are far away. Under these concerns, inflation size is chosen to
set the level number of a MIL layout as about three to six. Further-
more, the chosen inflation sizes are the half of polygon spacing at
the peaks in the polygon spacing distributions. The coverage rates
of entire layouts are presented in Table III while the sizes of gener-
ated character sets and the overall runtime are presented in Table
IV and Table V, respectively. In addition, we do not set the upper
bound for the size of the character set (% in Algorithm 3). We com-
pare the average number of rectangles in an E-beam shot (ANRE)
and CP-efficiency (ECP). ECP is defined as:

ECP = #'�()*� +-/0 (1 234 (#+6�7)� 8)70*�96))

#'�()*� +-/0 (1 ;��'4�

Notably, the remaining rectangles not printed by CP are printed
using VSB instead. On the other hand, ECP is evaluated as the aver-
age number of rectangles in an E-beam shot. Both ANRE and ECP
are presented in Table VI. In this table, only the inflation sizes pro-
ducing the maximum coverage rates under the given W are listed.
Finally, in Table VII, we show the statistics of the top 5 patterns of
the benchmarks using the settings of W and d that produce the high-
est coverage rate in Table III. These statistics summarize the num-
bers and the size, i.e. the number of polygons in the pattern, of these
top 5 patterns.

As we can observe from these tables, the rectangle density in b15
is very low, so it requires larger inflation sizes to produce a 3-level
MIL layout. As a result, it is hard to produce FUCs, and the corre-
sponding ANRE and ECP are also low for b15. On the contrary, the
panel layout is much more regular, and thus has 100% coverage rate
and considerable throughput improvement (ECP > 8). According to
Table VI, 99.7% of the sliced rectangles can be printed by top 3
FUCs of the panel layout when W = 5 pitch and d = 1.5s. Even for
b15, 45.2% and 67.4% of the rectangles in via and metal layer can
be printed by top 5 FUCs, respectively. These results show that the
proposed algorithm can efficiently generate good character set for
improving CP throughput in via and interconnection layers, and
even on a panel layout. Fig. 12 shows the top 9 FUCs for the panel
layout to achieve 100% covering rate..

Table II. Benchmarks statistics.
 b15/via b15/metal industry/via industry/metal panel
psize 25,479 8204 399,012 170,377 545,790
rsize 25,479 12,864 399,012 873,680 1,090,138

Fig. 11. Algorithm of the proposed character generation.

Algorithm 3. Character Generation Algorithm
Input: A set of polygons P, window size W, a set of pattern candidates
Pc, and the maximum number of characters %.
Output: A set of FUCs Ψ.

1. while (|Ψ| % & Pc is not empty) do,
2. Pattern_Generation(P, W). (Algorithm2)
3. Find pattern frequencies with [9].
4. φ ← pattern with the highest frequency.
5. Ψ ← Ψ ⋃ {φ}.
6. Cut all φ from the given layout.
7. Pc = Pc - φ.

Fig. 10. Example of pattern clip. (a) Original layout; (b) the corresponding MIL layout; (c)~(f) clipping candidates with centers and corre-
sponding pattern boundaries; (g)~(j) associated clips of (c) ~ (f).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

clip centerC1 C2 C3

- 130 -

Table III. Character covering rate (%) under different inflation sizes (d) and different window sizes (W).
W d b15/via (%) b15/metal (%) industry/via (%) industry/metal (%) panel (%)

5s 9s 13s 5.3s 6.9s 8.5s 3.5s 5.5s 7.5s 2s 2.5s 3.2s 1.5s 2s 2.5s
3 pitch 72.3 40.52 37.34 81.23 66.78 57.9 69.2 93.3 78.12 73.2 61.54 51.9 97.3 97.3 97.3
5 pitch 27.3 57.3 21.07 49.71 61.55 70.62 32.3 87.3 89.07 46.91 80.19 81.23 100 100 100
7 pitch 21.19 25.31 19.6 31.1 53.1 66.8 19.1 46.17 77.84 31.28 40.9 72.45 95.1 95.1 99.9

Table IV. Sizes of character set under different inflation sizes and different window sizes.
W d b15/via b15/metal industry/via industry/metal panel

5s 9s 13s 5.3s 6.9s 8.5s 3.5s 5.5s 7.5s 2s 2.5s 3.2s 1.5s 2s 2.5s
3 pitch 530 413 312 547 428 292 65487 133295 96574 205684 121541 115003 5 5 5
5 pitch 110 237 78 192 277 387 10853 118833 58208 93698 135478 131471 9 9 9
7 pitch 71 195 126 109 183 269 96574 126574 111947 15472 56489 102453 13 13 11

Table V. Overall runtime (minute).
W d b15/via b15/metal industry/via industry/metal panel

5s 9s 13s 5.3s 6.9s 8.5s 3.5s 5.5s 7.5s 2s 2.5s 3.2s 1.5s 2s 2.5s
3 pitch 13.77 12.06 16.18 13.22 14.76 32.7 16.01 30.2 38.58 79.7 86.9 36.65 4.48 7.92 10.17
5 pitch 5.39 17.72 7.65 10.23 10.6 57.98 6.65 32.66 58.3 160.78 166.36 116.18 6.3 8.56 15.23
7 pitch 2.83 13.32 11.87 5.2 9.23 28.15 2.01 16.45 50.16 232.7 237.2 194.98 6.68 8.8 16.9

Table VI. Required CP-efficiency (ECP) comparisons.
W b15/via b15/metal industry/via industry/metal panel

d ECP ANRE d ECP ANRE d ECP ANRE d ECP ANRE d ECP ANRE
3 pitch 5s 1.97 3.6 5.3s 2.43 3.5 5.5s 4.12 3.3 2s 2.67 4.7 1.5s 7.12 7.1
5 pitch 9s 1.87 3.3 8.5s 1.92 4.3 7.5s 3.64 4.1 3.2s 2.92 6.1 1.5s 8.53 8.9
7 pitch 5s 1.28 4.3 8.5s 1.88 5.5 7.5s 2.61 4.9 3.2s 2.77 7.3 1.5s 6.55 10.1

Table VII. Top 5 FUPs of benchmarks with settings resulting in the highest coverage in Table III.
Benchmark W / d 1st pattern 2nd pattern 3rd pattern 4th pattern 5th pattern

number size number size number size number size number size
b15/via 3 pitch / 5s 1396 3 973 3 736 3 447 3 324 3
b15/metal 3 pitch / 5.3s 738 3 601 4 591 3 456 3 227 4
industry/via 3 pitch / 5.5s 25548 3 19964 3 17745 3 11439 4 8416 4
industry/metal 5 pitch / 3.2s 17652 4 10039 5 9127 5 8365 6 6033 5
panel 5 pitch / 1.5s 105,651 9 10892 6 10127 7 375 8 320 8

6. CONCLUSIONS
Pattern diversity is a critical challenge of using CP on intercon-

nection layers. Existing works is hard to generate good characters
for 1-D IC layout and 2-D panel layout. Hence, CP-EBL cannot
fully utilize its power of high throughput fabrication on intercon-
nection layers and retina-resolution panel layout. This work pro-
poses an efficient character generation algorithm for CP-EBL based
on the presented MIL layout. The inflated layer reduces the problem
instance size for identifying the frequently used patterns while the
intersection layers help in clipping windows to obtain ideal charac-
ter set. Experimental results show that the proposed methodology
can efficiently yield the frequently used character set with up to
93.3% and 81.23% covering rate in via layer and metal layer. Be-
sides, for a panel layout, a set of frequently used characters to reach
100% covering rate is successfully identified.

7. REFERENCES
[1] Takeshi Fujino, et al, "Character-Build Standard-Cell Layout Tech-

nique for High-Throughput Character-Projection EB Lithography," In
Proc. of SPIE, 2005.

[2] K. Yuan, B. Yu, and David Z. Pan, "E-Beam Lithography Stencil Plan-
ning and Optimization with Overlapped Characters," In IEEE TCAD,
Vol. 31, Issue 2, pp. 167-179, 2012.

[3] C. Chu, and W.-K. Mak, "Flexible Packed Stencil Design With Multi-
ple Shaping Apertures and Overlapping Shots for E-beam Lithogra-
phy," In IEEE TCAD, Vol. 34, Issue 10, pp. 1652-1663, 2015.

[4] D. Guo, Y. Du, and Martin D.F. Wong, "Polynomial Time Optimal
Algorithm for Stencil Row Planning in E-Beam Lithography," In Proc.
of ASP-DAC, 2015.

[5] P. Du et al, “Character Design and Stamp Algorithms for Character
Projection Electron-Beam Lithography,” In Proc. of ASP-DAC, 2012.

[6] R. Ikeno et al, "High-throughput Electron Beam Direct Writing of VIA
Layers by Character Projection using Character Sets Based on One-
dimensional VIA Arrays with Area-efficient Stencil Design," In Proc.
of ASP-DAC, 2013.

[7] Masahiro Shoji, et al, "Practical Use of The Repeating Patterns in
Mask Writing," In Proc. of SPIE, 2010.

[8] Rimon Ikeno, et al, "Line-Edge Quality Optimization of Electron
Beam Resist for High-Throughput Character Projection Exposure Uti-
lizing Atomic Force Microscope Analysis," In Proc. of SPIE, 2017.

[9] H.-Y. Su et al, "A Novel Fast Layout Encoding Method for Exact Mul-
tilayer Pattern Matching with Prüfer Encoding", In IEEE TCAD, Vol.
34, Issue 1, pp. 95-108, 2015.

Fig. 12. FUPs of the panel under W = 5 pitch and d = 1.5s. (a) ~
(i) are top 1 to top 9 FUCs.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

- 131 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

