R1-3

SASIMI 2019 Proceedings

Reconfigurable Activation Functions for Neural Networks Application

Yu-Jung Huang Meng-Jhe Li

Dept. of Electronic

Engineering,
I-Shou University, Kaohsiung, of Science and Technology,
Taiwan Taiwan
email: email:

yjhuang@isu.edu.tw 1106305149 @nkust.edu.tw

Abstract - Field programmable gate arrays (FPGAs) hve
recently become popular for accelerating the deepeérning

networks due to their parallel processing and recdigurable

capabilities as well as their energy efficiency. Thipaper presents
a multi-layer neural network architecture with novel

reconfigurable activation functions by utilizing the coordinate
rotation digital computer (CORDIC) technique and applying the

floating-point format (IEEE 754 standard in single precision).
The functionality was successfully verified in hardvare using a
DEZ2-115 board that included an Altera Cyclon& IV FPGA.

. Introduction
An artificial neural network (ANN) is an intercorcted
group of nodes which perform functions collectivelyd in
parallel, akin to human brain activities [1, 2]. NN have
broad applicability to real world problems and deest-
growing artificial intelligence (Al) techniques wkein

industries during recent years. The artificial meurepresents constant input of 1x¢=1). The role of activation functions is to

Wun-Siou Jhong Shao-I Chu

Dept. of Electronic Engineeringept. of Electronic Engineerinfept. of Electronic Engineering
National Kaohsiung UniversityNational Kaohsiung UniversityNational Kaohsiung University

of Science and Technology,
Taiwan
email:

erwinchu@nkust.edu.tw

of Science and Technology,
Taiwan
email:
f107152130@nkust.edu.tw

functions can provide more flexible applications feeural
networks. In this paper, the FPGA implementatiorthwi
reconfiguration activation functions for neural wetks is
thus proposed.

[l. Non-Linear Activation functions
A neuron forms the basis for designing the ANNBe T
output activatiorf for the neuron is described by

0= (X wx +h).

j=1

(1)

wi; denotes the weights connecting jtieinput unit to theéth
hidden unit. The weighted summation adds up thdymis of
previous neurons multiplied by the correspondinggivs, and
then, the activation function is utilized to cakud the output.
The biash can be viewed as simply another weigid) (with a

real neuron mathematicallyA large number of hardware make neural networks non-linear. The non-lineatitjes a

architectures have been proposed for
implementation of ANNs. ANNs may be carried outusing
analog systems or digital systems. In addition,stéxg
platforms for hardware implementation of ANNSs irgédu
digital signal processing (DSP) chips, applicatgpecific
integrated circuits (ASICs), graphical processimi (GPU)
[3] and field programmable gate array (FPGAs) . the
parallel structure of FPGAs matches the topologfeSNNs,
they are quite suitable for the implementation dii¥s [5, 6].

hardwafga|-valued number and squashes it into the raegeeen 0

and 1. In particular, large negative numbers beddamd large
positive numbers become 1. The sigmoid function
frequently applied because it has a nice interpogtaas the
firing rate of a neuron. The RelLu function is flagiuring the
training procedure. A large gradient flowing thrbug RelLu-
based neuron could cause the weights to updatechmaway
that the neuron will never activate on any datafpagain. By
exploiting the MNIST dataset [7], an ANN modeliiaihed by

The FPGA-based designs can accelerate the netwerkwo-layer perceptron to recognize the handwrittégits.

classification process (forward computation) andiece
faster execution time and higher energy efficietign CPU
and GPU. This feature enables the neural netwdekence to
have the advantage of reducing the cost of neudemn
development. Most FPGA implementations are recondible
by means of system regeneration and device reagafign to
change the network topology. Although network ftiragn
describes the problem of determining the paramétensodel
the target function, the activation function of thedes can
affect the training behavior of the network. Vasaactivation
functions lead to different convergence behaviat accuracy.
For example, long short-term memory (LSTM) is thesin
commonly used model in the current recurrent neugdvork
(RNN). The RNN is mainly applied to solve the pehl of
time series data. In training RNN, different kirafsactivation
functions can be applied to obtain the differerdpss of the

Fig.1 depicts the training loss for two types otiation
functions. For a two-layer perceptron, the trainiogs of the
sigmoid function is less than that of ReLu function

Activation function

[
epoch

Fig. 1 Training loss over iterations for the ANN deb

Fig. 2 shows the evaluation results of a neuralvoek
performance with different activation functionsgliding the

error surface. The presented reconfigurable adtivat SI9Moid, ReLu and hypertangent (tanh) functiongam the

-14 -

is

CartPole Agent in OpenAl gym [8]. It indicates thie tanh board allows for full operation of the device toibeestigated.
outperforms the other two activation function. A Vivado tool-generated IP block is integrated iat@ynq AP
SoC. The Vivado tool-generated IP block is prefietion
Altera Cyclone® IV FPGA.

Evaluation reward

17 [[w2
| J ¥
175 | ||| FSM ‘
150 4 |l ; ¥ n
1% : hift [1]
E 100 4 o Ildu‘
75 ! FP_ADD ‘ FP_ADD ‘ ‘ FP_ADD ‘
01 Z out
"" ™ pr % %) e S
Episode
(a) Sigmoid function "m-j:w 1
‘ FP_ADD 1
Evaluation reward |
200 4 r 7FI’_DI\'
1rs 4 I| s.gmém(zr
150 4 U Fig. 3 FPGA implementation of activation functiobased on the
5125 | floating-point CORDIC technique
E' 100 4
L ARM CPU s e
04 Python On Linux OS ZYNQFPGA
Y = 2 : E E J | NN IP Block Design
g 2 » o %o e i Floating
Episode States Input to NN = ‘ [T‘i“]""i" Paint
(b) ReLu function : Ny AXUTnercomnect >f ||| Siemoid TanivRelu
NN Action Results | _\ i ‘ | Floating CORDIC
Evaluation reward ‘ Adderautiplies || 05%K
2001 -, 7
" Fig. 4 System architecture of the proposed method
150
g i The implemented neural network is shown in FigvBere the
&wo input for the neural network is (-0.3169452, -0.8937, -
» 0.003161569, 0.23862739) and the output resultsimdd are
e oxbf6ff9bb and ox3f54f7c1 by Python simulation.
5
o T) * — T -
> = v Episode = = i Cart Position
(c) Tanh function
Fig. 2 Learning curve for different activation fuions Cart Velocity

lll. FPGA Implementation
Activation functions play an important role in the
applications of deep learning and neural netwofkseural
network with reconfigurable activation functions is ol velocin
implemented in the FPGA board. FPGA implementatibn
activation functions based on using the floatingapo i Chesea
CORDIC technique [9] is shown in Fig. 3. The flogtipoint

Pole Angle

Fig.5.FPGA implementation of neural network with

format iS IEEE 754 Standard in Single pl’eCiSiOI”e UORDIC reconﬁgurab|e activation functions

technique is a simple and efficient algorithm tgiement the

hyperbolic and trigonometric functions in hardwavée use |n addition, the weights and the bias extractednfrine
the rotation mode to implement the exponential fiomc trained neural network are listed in Table 1. Theppsed

As shown in Fig. 4, the Zynq SoC with an FPGA and adesign has been simulated and synthesized by Sgingpsys
ARM core are adopted for our system implementatidR. design compiler logic synthesis tool. Table 2 sumires the

SoC consists of an SoC-style integrated processisigm (PS) |ogic element gate counts and the power consumjitisred
and programmable logic (PL) on a single die. Thisl@ation on the TSMC 130 nm technology file.

-15-

Table 1. Weights and bias extracted from the tchimeural network

weight Input 1 Input 2 Input 3 Input 4 bias
Hidden1 n0 3d97b032 bdc57f3b bfac9féc bf5d4225 3e945dlLc
Hidden1 n1 3d482b43 be398996 bfafcadc bf598e3 3e99c85
Hidden1 n2 bd38ablc 3ec9ad78 3fabeede 3f10b3dp 3eafdfbc
Hidden1 n0 | Hiddenl nl | Hiddenl n2
Hidden2 n0 3f3fcfe7 3f54a216 bf462ce2 3e34c2hp
Hidden2 n1 3f394b2b 3f4897dc bf40a145 3e2fff6
Hidden2 n2 bc94f551 bb07a8a3 bcdlldc4 bb372bf2
Hidden2 n3 bc7leaal bc0f030f bb2b5a14 0000000
Hidden2 n0 | Hidden2 n1 | Hidden2 n2 | Hidden2 n3
Output 0 359811 3558439 3ce369c4 3ccdd15f bff%1]
Output 1 bf59d8b9 bf4f79de bcadea02 bcac039[7 3f6b1
Table 2 Design compiler report
Power Group Internal Switching Leakage Total %
Register 40.1581 6.6978E-2 2.3126E+9 42.5385 8849
Combinational 0.2173 1.9534 3.3609E+ 5.5311 11.51
Total (mW) 40.3754 2.0204 5.6735 48.060! 1000
Combinational area 4436725.231794 un
Buf/inv area 672944.402659 ufn
Non-combinational area 2589174.8533972um
Total cell area 7025900.085191 um

Table 3 lists the Quartus report based on CycloahesX

family EP4CGX150DF31C7 device, where the number ofw

total logic elements is 135149. Simulation resoftde ANN-
based architecture using Verilog with the same tmpmare
shown in Fig. 6. It is observed that the outputultssare
consistent with by Python simulations, listed inblea4. It
implies the successful and accurate implementation.

Table 3 Quartus report

Total logic elements 135149 / 149760 (90%)
Total registers 54158

Total pins 198 / 508 (39%)
Embedded Multiplier 9-bit elements 518 / 720 (72%)

& Baseline w = 206, 407ps
FF| Cursor-Baseline v = 2,528,895ps

Fig. 6 Simulation result of the ANN with reconfiginle
activation function

Table 4. Results of software and hardware

Python Modelsim Modelsim sw-hw
Env data (value) (i754) (value) error
-0.3169452 OutputO:
-0.3536957 -0.937404332 bf6ffoba -0.9374043 3.2E-8
-0.0031616 Outputl:
0.2386274 0.831905435 3f54f7c2 0.8319055 6.5E-8
-0.431019142 OutputO:
-0.338862689 -0.645919531 bfa255fb -0.6459195 3.1E-8
-0.007135561 Outputl:
0.228214161 0.6483183988 | 325832 0.6483184 1.2E-9
-0.457088163 OutputO:
-0.143544401 -0.000970211 ba7e5c00 -9.70304E-4 9.2E-8
0.003705012 Outputl:
-0.068809343 0.0117675211 | 3c40cccO 0.011767566 4.4E-8
-0.478215659 Output0:
-0.143402603 0.0161192181 3c840c20 0.016119063 1.5E-7
0.001295675 Outputl:
-0.071936886 -0.005099163 bba71580 -0.00509899 1.6E-7

The verified Verilog code was downloaded on an ralte

Cyclon€ IV FPGA in the Altera DE2 board. This Altera DE2
board includes an Altera Cycldh®/ FPGA as well as various
on-board components. The FPGA implementation and
verification platform are shown in Fig. 7, whichnche used
simultaneously for comparison of the simulation and
implementation results. In Fig. 8, the results loé FPGA
implementation are further measured by the HP 18716gic
analyzer for real-time verification.

Fig. 8 Output obtained from a logic analyzer

V. Summary and Conclusions

Most of the neural networks have been applied mage
applications. It might be enough using fixgdint precision
for pixel-type data. However, as the neural netwsrikpplied
for other applications such as cartpole problera,flbating
point computation becomes necessary to obtain theeat
results. The proposed ANN architecture, which cstesdf
reconfigurable activation functions with floatingipt
arithmetic, has been realized in the FPGA devi€esults
reveal the successful implementation of the nenealvorks
by using the CORDIC technique.

References

[1] Simon Haykin, Neural Networks: A Comprehensive
Foundation, 2ed. Addison Wesley Longman (Singapore)
Private Limited, Delhi, 2001

[2] B. Scholkopf, “Artificial intelligence. Learning teee and
act,” Nature, vol.518, pp. 486-487, 2015.

[3] Shuoxin Lin, Yanzhou Liu, William Plishker and Shav
S. Bhattacharyya, “A design framework for mapping

-16 -

vectorized synchronous dataflow graphs onto cpu gpu
platforms,” 19th International Workshop on Software

and Compilers for Embedded Systems, pp. 20-29, New
York, NY, USA, 2016. ACM.

[4] Z. Li, Y. J. Huang and W. C. Lin, “FPGA implemernitat
of neuron block for artificial neural network,” 201
International Conference on Electron Devices and Solid-
Sate Circuits (EDSSC), pp. 1-2, 2017.

[5] A. Shawahna, S. M. Sait and A. El-Maleh, “FPGA-lthse
accelerators of deep learning networks for learrand
classification: A review,1EEE Access, vol. 7, pp. 7823—
7859, 2019.

[6] S. I. Venieris, A. Kouris and C.-S. Bouganis, “Taws
for mapping convolutional neural networks on FPGAs:
survey and future directionsACM Computing Surveys,
vol. 51, no. 3, Jun. 2018.

[7] Y. LeCun, MNIST Handwritten Digit Database, [Onljne
Available: http://yann.lecun.com/exdb/mnist/

[8] https://gym.openai.com/

[9] V. Tiwari and N. Khare, “Hardware implementation of
neural network with sigmoidal activation functioansing
CORDIC,” Microprocessors and Microsystems, vol. 39, no.
6, pp. 373-381,2015.

-17 -

