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Abstract— Ising model, which consists of spins and
interactions of them, is a novel way to solve combi-
natorial optimization problems, for example, LSI lay-
out problem. The problem is solved by updating the
spins stochastically after being mapped to the model.
Spins can be updated simultaneously on hardware.
However, the problems aren’t solved fast since two
spins with interaction should not be updated simulta-
neously. In this paper, we give a guideline of updat-
ing the spins simultaneously to execute a high-speed
search and confirm it through experiments.

I. Introduction

A combinatorial optimization problem is to find an op-
timal discrete combination which minimizes (maximizes)
an objective function. When the problem is NP-hard, as
the size of this problem becomes big, the time which is
needed to find the optimal solution increases rapidly. So,
methods of stochastic search, for example, simulated an-
nealing (SA) and genetic algorithm (GA), are proposed
for finding a suboptimal solution with practical time.
The Ising computer is an alternative method of finding

a suboptimal solution. In this computer, an Ising model,
which models the behavior of the magnetic spins, is used
to solve the problems. Every spin in the Ising model can
be upward or downward. There are interactions between
spins. To solve a combinatorial optimization problem us-
ing an Ising model, it is mapped to the Ising model, and
spins are updated stochastically so that the energy of the
Ising model is minimum. Since an Ising model is easy to
be embedded in hardware and updating spins in parallel
can be executed easily, the Ising computers are expected
to execute a high-speed search for a solution of equivalent
evaluation to a solution by existing methods. Various
Ising computers were proposed[1, 2, 3, 4, 5]. In addition,
some problems, e.g., a packing problem, which is used for
LSI floorplan problem, were mapped to the Ising model
and solved by these computers[6, 7, 8].
In the Ising computers, spins without interactions can

be updated simultaneously[9]. In contrast, if spins with
interactions are allowed to be updated simultaneously, the
spin state may oscillate. Even if the oscillation does not
occur, a solution obtained may be inferior to one by not
updating spins with interactions simultaneously. There-
fore, we consider that any pair of spins with an interac-
tion should not be updated simultaneously. However, in

case that almost all pairs of spins have the interactions,
almost no pair of spins can be updated simultaneously.
Then, searching for the solution cannot be executed with
high speed. In order to execute a high-speed search, we
desire to update some pairs of spins with interactions si-
multaneously.
In this paper, we will give a guideline so that as many

pairs of spins with interactions as possible can be updated
simultaneously under the condition to search for a solu-
tion of good evaluation. Then, in accordance with the
guideline, we will propose a method of updating pairs of
spins simultaneously for a traveling salesman problem. In
addition, we will compare the method with other methods
through computer experiments.
The rest of this paper is organized as follows. II explains

an overview of an Ising model and Ising computers. III
describes existing researches about mapping and updating
spins stochastically. In IV, we discuss a motivation of
our research and introduce a guideline for updating spins
with interactions. In V, we propose an updating method
with the guideline and make experimental comparisons.
Finally, in VI, we conclude.

II. Ising Computer

A. Ising Model[7]

An Ising model expresses the behavior of the magnetic
spins. Fig.1 shows an Ising model. The model consists
of spins, which can be upward or downward, interactions
between pairs of spins, and an external magnetic field.
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Fig. 1. An example of 2-D lattice Ising model.
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The Ising model is represented by an undirected graph
G(V,E), where V is a set of vertices corresponding to
spins and E is a set of weighted edges corresponding to
interactions. Vertex i corresponds to spin i, and edge (i, j)
corresponds to an interaction between spin i and j. The
edge has weight Jij which is an interaction coefficient. In
this paper, when two spins have an interaction, they are
called “connected”.
In this model, a spin state changes to minimize the

entire energy:

H = −
∑
i

∑
j

Jijσiσj −
∑
i

hiσi, (1)

where σi denotes a value of spin i which takes 1 if the
spin is upward and −1 if the spin is downward, and hi is
a coefficient of the external magnetic field. All spin values
are updated to minimize the energy H. In particular, a
spin state with minimum energy is called ground-state.

B. Ising Computers

To solve a combinatorial optimization problem using
an Ising computer, at first, we map the problem to an
Ising model on the Ising computer so that ground-state
corresponds to an optimal solution of the problem. Next,
the spins are updated in order to minimize the energy of
the Ising model. Updating a spin means that whether
to accept a spin flip is determined. Finally, a solution of
the problem is gotten from a spin state obtained. Since
an Ising model is easy to be embedded in hardware and
parallel operations can be executed easily, the Ising com-
puters are expected to execute high-speed-search for a
suboptimal solution.

III. Searching Solutions Using Ising Model

To solve a combinatorial optimization problem using an
Ising model, the problem is mapped to the Ising model
such that the ground-state of it corresponds to the op-
timal solution of the problem. Then, searching for the
ground-state is executed by updating spins stochastically.
In this section, we explain a method to map TSP (Trav-
eling Salesman Problem) to the Ising model and the flow
of searching solutions.

A. Mapping TSP to the Ising Model[2, 10]

TSP is defined as follows: given a set of cities and the
distance for each pair of cities, find the shortest cycle
to visit all cities exactly once. Note that the traveler
returns directly to the starting city from the last city.
To map TSP to the Ising model, we define the binary
variable xi,a which is 1 if city i is visited at order a, and
0 otherwise. Note that after the mapping, not xi,a but
the spin values are updated to search solutions. In this
paper, we explain the mapping by using xi,a, because it is
convenient to describe the energies in terms of xi,a. The
binary variable xi,a = 1 is converted to the spin value
σi,a = 1, and xi,a = 0 is converted to σi,a = −1 by

xi,a = (σi,a + 1)/2. (2)
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Fig. 2. Edges mean the
interactions to enforce that
every city appears exactly
once in a cycle.
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Fig. 3. Edges mean the
interactions to enforce that
exactly one city is visited at
each order a.
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Fig. 4. Edges mean the interactions which make HB equal to the
total distance of the cycle which is decided by a set of xi,a. The
interaction between two spins corresponds to the distance between
two cities.

The energy of the Ising model which TSP is mapped
to is H = wHA +HB ; wHA is a penalty term and HB is
the total distance of the cycle which is decided by a set of
xi,a. A parameter w is a weight of the penalty term. HA

is defined by

HA =

N∑
i=1

(
N∑

a=1

xi,a − 1

)2

+

N∑
a=1

(
N∑
i=1

xi,a − 1

)2

, (3)

which represents two constraints: the first term enforces
that every city can appear exactly once in a cycle and the
second term enforces that exactly one city is visited at
each order a. As shown in Fig.2 and Fig.3, the interac-
tions of HA correspond to edges connecting spins. In the
following, these edges are called “penalty edges”. These
interactions enforce that spin values should not violate
the constraints. If HA = 0, the solution represented by
the spin state is feasible.
HB , the total distance of the cycle which is decided by

a set of xi,a, is defined by

HB =

N∑
a=1

N∑
i=1

N∑
i′=1

di,i′xi,axi′,a+1, (4)

where xi,N+1 = xi,1, and di,i′ is a distance between city
i and city i′. The interactions in Fig.4 make HB equal
to the total distance of the cycle which is decided by a
set of xi,a. In the following, the edges in Fig.4 are called
“distance edges”.
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Fig. 5. The probability P (ΔH) for T = 0.6 and T = 30

The parameter w, the weight of the penalty term, has
enough weight so that evaluations of feasible solutions
better than that of infeasible solutions.

B. Updating Spins with Some Probability[3]

In this paper, we use the search method based on Hi-
tachi’s Ising computer implemented on FPGA[3], because
an evaluation of the solution is reported to be equivalent
to a solution by simulated annealing.
The flow of searching solutions by updating spins in the

Ising model is as follows:

Step1. Temperature T is set to a given initial value. All
spin values are set to 1 or −1 randomly.

Step2. Repeat the following step until T reaches a given
final value.

Step2-1. Every spin is updated stochastically. T is
decreased as T = βT , where β is a cooling ratio
(0 < β < 1).

In Step2-1, a spin flip is accepted with the following
probability

P (ΔH) =
1

2

{
1 + tanh

(
−ΔH

2T

)}
, (5)

where ΔH is the increase of the energy by spin flip. Fig.5
shows this probability. In case that T is high, the global
search for the spin state can be executed because a spin
flip which increases the energy is accepted with probabil-
ity which is nearly equal to the probability of accepting a
spin flip which decreases the energy. On the other hand,
at a low temperature, local search can be executed be-
cause a spin flip which increases the energy is hard to
be accepted and a spin flip which decreases the energy is
accepted with high probability.

IV. Motivation of This Research and

Proposed Guideline

In Ising computers, spins which are not connected can
be updated simultaneously[9]. For example, when an

Ising model is represented by a grid graph[11], all spins
can be grouped into two groups, each of which doesn’t has
connected spins because the grid graph is bipartite. Since
all spins in one group can be updated simultaneously, the
number of times which is necessary for updating all spins
in the Ising model is smaller than the number of times to
update spins one by one.
On the other hand, if connected spins are allowed to

be updated simultaneously, the spin state may oscillate.
Even if the spin state does not oscillate, the solution is
not always inferior to that by updating spins one by one.
Thus, connected spins should not be updated simultane-
ously.
However, almost no pair of spins can be updated si-

multaneously if the Ising model can be represented by a
dense graph: the number of times which is necessary for
updating all spins is nearly equal to the number of spins
in the model. Therefore, searching solutions on hardware
cannot perform with high-speed. In order to execute a
high-speed search, we desire to update some pairs of con-
nected spins simultaneously.
If spins connected by an edge are updated simultane-

ously, energy increase related to weight of the edge may
occur though each spin is updated to decrease the energy.
Therefore, a guideline for updating connected spins simul-
taneously is as follows:
Guideline: As many spins as possible are updated si-
multaneously except for connected spins by edges of large
weights.
In the following, we will propose a method to update spins
simultaneously in accordance with the guideline.

V. Computer Experiments

We experiment to confirm the above guideline. Recall
that the problem which is mapped to an Ising model is
TSP. Let the number of cities be N : i.e., the number of
all spins is N2.

A. Grouping Spins into Subsets

To explain a method of updating connected spins si-
multaneously under the proposed guideline, we will group
all spins in the Ising model into subsets. Each subset is
focused on one by one and all spins in it are updated si-
multaneously. Updating all spins in one subset simultane-
ously is called “subset-updating” in this paper. The num-
ber of subset-updatings necessary for updating all spins
is equal to the number of subsets.
We map TSP to an Ising model, so the guideline which

TSP is adapted to is as follows: as many connected spins
as possible are updated simultaneously except updating
spins connected by penalty edges. Note that weight of a
penalty edge is large enough to avoid an infeasible solu-
tion. In order to experiment with the guideline for TSP,
we explain three kinds of groupings; (1) two spins con-
nected are not updated simultaneously, (2) two spins con-
nected by distance edges and penalty edges are allowed to
be updated simultaneously, and (3) two spins connected
by distance edges are allowed to be updated simultane-
ously while that connected by penalty edges are not al-
lowed to be updated simultaneously.
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Fig. 6. All spins in an Ising model are grouped into 2N subsets
A,B, · · · , and L by “2N-partite Grouping”.

G-1. Grouping Singly

By “Grouping Singly”, connected spins are not updated
simultaneously. All spins are grouped into separate sub-
sets; i.e., each subset has one spin. Therefore, all spins
are updated one by one.
Since the number of subsets is N2, the number of

subset-updatings necessary for updating all spins is N2.
We expect that subset-updatings under this grouping

can search for a suboptimal solution, so the energies of
the solutions under the other grouping will be compared
with that of Grouping Singly.

G-2. 2N-partite Grouping

By “2N -partite Grouping”, connected spins are not up-
dated simultaneously. All spins are grouped into sub-
sets such that the number of subsets is minimum under
the constraint which each subset doesn’t have connected
spins. A spin of σi,a (i = 1, 2, · · · , N and a = 1, 2)
and a spin σi′,a′ are included in one subset, where i′ is
((i+ k − 1) mod N) + 1 and a′ is a+ 2k (1 ≤ k < N/2).
As shown in Fig.6, connected spins are not included in
each subset.
This grouping generates 2N subsets; i.e., the number of

subset-updatings necessary for updating all spins is 2N .
Therefore, searching solutions by subset-updatings under
this grouping may be executed N/2 times faster than that
of G-1.
By this grouping, since connected spins are not updated

simultaneously, we expect that the energies of solutions
under this grouping are nearly equal to that of G-1.

G-3. One Grouping

Unlike the above groupings, by “One Grouping”, con-
nected spins may be updated simultaneously. All spins
are put into one subset; they may be updated simultane-
ously.
Since there is only one subset, all spins may be up-

dated in constant time, regardless of the number of spins.
Therefore, searching solutions under this grouping may
be executed N2 times faster than that of G-1.
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Fig. 7. All spins in an Ising model are grouped into two subsets
A,B by “Grouping Like Checkerboard”.
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Fig. 8. All spins in an Ising model are grouped into N subsets
A,B, · · · , and F by “Moderate Grouping”.

G-4. Grouping Like Checkerboard

By “Grouping Like Checkerboard”, connected spins may
be updated simultaneously. All spins are grouped into
two subsets like a checkerboard pattern. Fig.7 shows this
grouping.
Since there are two subsets by this grouping, all spins

may be updated in constant time, regardless of the num-
ber of spins. Therefore, searching solutions under this
grouping may be executed N2/2 times faster than that of
G-1.

G-5. Moderate Grouping

“Moderate Grouping” is a proposed grouping in accor-
dance with the guideline. Spins connected by penalty
edges are not updated simultaneously while spins con-
nected by distance edges may be updated simultaneously.
A spin of σi,1 (i = 1, 2, · · · , N) and a spin of σi′,a′ are in
one subset, where i′ is (N − (k + 1) + i) mod N + 1 and
a′ is 1 + k (1 ≤ k < N). As shown in Fig.8, spins con-
nected by penalty edges are not included in one subset,
but spins connected by distance edges may be included in
one subset.
The number of subsets in this grouping is N ; i.e., the

number of subset-updatings necessary for updating all
spins is N . Therefore, searching solutions under this
grouping may be executed N times faster than that of
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G-1.

Comparison of the above groupings is shown in the left
five columns of Table.I.

B. Experimental Results

We used TSP problem “fri26” in TSPLIB[12] for the
experiments.The number of cities in this problem is 26
and the total distance of the shortest cycle is 937.
As explained in III, since weight of the penalty edge

should be larger than a distance between two cities in or-
der to search for a feasible solution. Therefore, the weight
coefficient w of the penalty term was set to 150. Initial
temperature and final temperature were determined by
pre-runs. The cooling ratio β was calculated such that the
number of iterations in Step2 is 10 ·21, 10 ·22, · · · , 10 ·224.
We expect that there is a trade-off between the solution
evaluation and the number of iterations in Step2, simi-
lar to SA. Therefore, we experimented for five times with
distinct seeds of pseudorandom numbers for each cooling
ratio.

G-1, G-2, G-5 Fig.9(a), 9(b), 9(c) show ratio of resul-
tant energy to the total distance of the shortest cycle in
fri26. Note that the total distance is an energy of a so-
lution and so the resultant ratio is 1.0 when the solution
is optimal. As shown in these figures, there is the above
trade-off. In addition, the number of infeasible solutions
is large when the number of iterations in step2 is small,
while the number of infeasible solutions is zero when the
number of iterations in Step2 is large.
Fig.10 shows the comparison of the averages of the ra-

tios in these three groupings. As shown in this figure,
the energy of the proposed method G-5 is nearly equal
to that of the other two groupings.

G-3 All solutions under this grouping are infeasible,
where spin values are all 1 or all −1.

G-4 All solutions under this grouping are also infeasible.
The transition of spin state is occurred by repetition of
subset-updatings as shown in Fig.11.

Comparison of property and experimental results of five
kinds of groupings are shown in Table.I. As shown in this
table, connected spins may be updated simultaneously un-
der G-3, G-4, and G-5. Feasible solutions are obtained
under G-5, on the other hand, solutions under G-3, G-4
are infeasible. Since G-5 differs from G-3, G-4 in not up-
dating spins connected by penalty edges simultaneously,
we consider that if spins connected by the penalty edges
are not updated simultaneously, a feasible solution can be
obtained without oscillation of spin state.
Recall that the number of subset-updatings necessary

for updating all spins is equal to the number of subsets;
i.e., the necessary time to search for a solution must be
proportional to the number of subsets when to search solu-
tions is executed on hardware. Therefore, we expect that
searching for a suboptimal solution under G-5 is more
efficient than that under G-1.
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(a) Resultant ratio under G-1
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(b) Resultant ratio under G-2
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(c) Resultant ratio under G-5

Fig. 9. The ratio of resultant energy to that of the optimal
solution. “feasible” and “infeasible” mean the ratios of the
energies of feasible (infeasible) solutions. “average” means an
average of the ratios of feasible solutions.

VI. Conclusion

In searching solutions using an Ising model, connected
spins should not be updated simultaneously, but a high-
speed search cannot be executed when most of spins are
connected. In order to execute the search, we gave a
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TABLE I
Comparison of five groupings. “Ratio of solution energy” is the ratio of the resultant energy to the optimal energy,

where a solution energy was obtained when the number of iterations in Step2 is 10 · 224.

In a subset, spins connected by

Grouping distance edges penalty edges
the number of

subsets
the number of spins

in a subset
ratio of

solution energy

G-1: Singly not included not included N2 1 1.18
G-2: 2N -partite not included not included 2N N/2 1.18
G-5: Moderate included not included N N 1.24
G-4: Checkerboard included included 2 N2/2 infeasible
G-3: One included included 1 N2 infeasible
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Fig. 10. Comparison of averages of the ratio under G-1,G-2 and
G-5

Fig. 11. Transition of spin state by a repetition of
subset-updatings under G-4

guideline that as many spins as possible are updated si-
multaneously except for connected spins by edges of large
weights. In addition, we proposed a Moderate Grouping,
to update spins efficiently in accordance with the guide-
line. The grouping is compared with the other groupings
by experiments. As a result, the evaluation of solutions
under the grouping is nearly equal to that under the best
grouping.
Future works include thinking of a groping method in

accordance with the guideline for a problem where inter-
actions have many different weights.
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