R1-13

SASIMI 2019 Proceedings

A Real Chip Evaluation of a CNN Accelerator
SNACC

Ryohei Tomura, Takuya Kojima, Hideharu Amano
Dept. of Information and Computer Science, Keio University, Japan
Email: wasmii@am.ics.keio.ac.jp
Ryuichi Sakamoto, Masaaki Kondo
Graduate School of Information Science and Technology, The University of Tokyo, Japan

Abstract—SNACC (Scalable Neuro Accelerator Core with
Cubic integration) is an accelerator for deep neural network,
which can improve the performance by increasing the number
of stacked chips with inductive coupling wireless through chip in-
terface (TCI). The chip implementation and real chip evaluation
of SNACC are introduced. It consists of four processing element
cores which execute dedicated SIMD instructions, distributed
memory modules for storing weight data, and TCI. The real chip
evaluation by using Renesas Electronics’ 65nm SOTB (Silicon On
Thin Box) CMOS technology appears that a simple CNN LeNet
works at S0MHz for all layers with 0.90V supply voltage. The
power consumption is less than 12mW. The performance can be
enhanced by the forward body biasing about 15% in exchange
for about 2mW leakage increasing. Also, SNACC achieved more
than 20 times high performance to a MIPS R3000 compatible
embedded processor.

I. INTRODUCTION

In order to cope with recent advances in deep learning
technologies, accelerators for convolutional neural network
(CNN) have been widely researched. Unlike the trainig phase
typically done in the cloud, various types of dedicated ac-
celerators have been developed for the interface in the edge
devices which require high energy efficiency. Eyeriss[1] is a
CNN accelerator for embedded systems especially focusing
on optimized 2D-convolutional execution. For acceleration of
fully connected layers, DaDianNao[2] leaves out the necessity
of off-chip memory accesses by having large eDRAM modules
on a chip. EIE[3] cuts unnecessary trained weight parameters
and the bit-width of them resulting in the reduction of the data
size of the parameters without sacrificing the accuracy of the
recognition.

We also proposed and implemented an accelerator called
SNACC (Scalable Neuro Accelerator Core with Cubic in-
tegration) to achieve scalable performance improvement by
changing the number of stacked chips[4]. It was designed with
the following strategies.

e A dedicated light-weight microcontroller whose instruc-
tion set architecture is optimized for CNN operation is
adopted.

o An execution engine which consists of a SIMD multiply
and accumulate (MAC) unit with a variable bit-width
operand is provided for implementing fully connected
layers.

o Data re-usability of both convolutional and fully con-
nected layers is exploited with two read buffers, one for
stream like data and the other for temporal data.

o By providing wireless inductive coupling through chip
interface (TCI), it can be easily connected with the host
CPU and other SNACC chips to improve the perfor-
mance.

In this paper, some evaluation results of the real chip fab-
ricated by Renesas 65nm CMOS SOTB process is presented
with the results of simulation for multiple chips.

II. DESIGN OF SNACC

In this section, we briefly introduce the target application
and design of SNACC. The detail is described in the paper[4].

A. CNN overview

Various types of convolutional neural networks (CNNs)
have been proposed for deep learning applications. Some of
them have a lot of layers with complicated structure[5][6].
However, most of them consist of multiple layers with the
following three types: the convolutional layer (Eq.(1)(2)),
the pooling layer (Eq.(3)) and the fully connected layer
(Eq.(4)(5)), which are expressed in the corresponding equa-
tions.

an, (1,1 =3 D wn i)zl + 9+ 1+ by (1)
g p q

Yn, [Z’]] = f(ano [Zv.]]) ()
yli, j| = mazy, o(x[i + p, j + q]) 3
ali] = 3 wli. jlelj] + b @)
yli] = f(ald]) (5)

In the equations, f(e) denotes an activation function. ReLU
function f(x) = max(0,x) and sigmoid function f(z) =1/(1+
e~ 1) are representative ones. SNACC is designed so that these
three layers can be executed efficiently.

A typical CNN consists of several pairs of convolutional and
pooling layers, and then fully connected layers follow. Con-
volutional and fully connected layers dominate the execution
time of the CNN. However, their execution characteristics are
different, especially in the data access re-usability.

-62 -

Fig. 1: The overview of SNACC with local memory modules

64b reg. v
—> Max.
16][] unit
> ri3
l »
X
1 L
18\ | ri1
X
Fung.
+ Unit
141
X LUT
16
16 X
64b reg.

Fig. 2: SIMD unit for product-sum operation

B. Design of SNACC

SNACC consists of four SIMD cores, each of which imple-
ments its original instruction set and local memory designed
for CNNs. The instruction bit width is 16-bit, and 16 general
purpose registers are provided. Fig. 1 shows the schematic
diagram of the local memory configuration of the SNACC.
Each core has five memory modules, INST, DATA, RBUF,
LUT, and WBUEF, for instruction codes, input data, weight
data, output data, and lookup table, respectively. DATA and
WBUF are double-buffered so that the data transfer and
processing can be overlapped. Each core including four local
memories has an independent address space except WBUF.
The address space of WBUF is shared with four cores. In this

way, the computation results of each core can be shared.

Table I shows the examples of instructions supported by
SNACC. The instruction set of the SNACC core consists
of R-type (register-register) and I-type (register immediate)
instructions. However, unlike the standard 32-bit RISC in-
struction set architecture, only two operands are specified.
One of the most significant features of SNACC is SIMD
instructions which perform the mad (multiply-add) instruction
and the madlp (multiply - add with loop) instruction. Also,
This instruction set has the dbchange(change double buffer)
instruction and the dma(issue a DMA request) instruction.
Using these instructions, we can reduce control overhead
when calculating multiply-accumulation. Examples of control
overhead include address calculation for accessing target data,
loop control and processing conditional branches. In the case
of SNACC, we implement these processes and the SIMD
multiply-calculation operation sequence in the hardware and
include them in the multi-cycle custom SIMD arithmetic
instructions. As the result, it is more efficient than software
implementation using universal instructions set in terms of
accelerating of CNN detection and power consumption. Fig. 2
shows the SIMD unit for the mad instruction. The SIMD unit
can handle fixed-point arithmetic four 16-bits data or eight 8-
bits data. Each multiplier unit receives two input data from
the DATA and RBUF memory, and then, these products are
summed by an adder unit. The Max unit selects the maximum
value from all the inputs. Output data from the adder unit
and the max unit are chosen by a multiplexer and is stored in
the register r/3. In addition, an activation function defined by
the lookup table is applied to output data from the adder, and
the result is stored in the register r//. The madlp instruction
iterates this mad instruction for a specified number of times.
For controlling the SIMD instructions, each core provides
eight 8-bits control registers, and four 32-bits SIMD registers.

C. TCI and the chip stack

SNACC provides an inductive coupling channels TCI[7] to
form a link with stacked chip. Square coils implemented with
arbitrary metal layers are used as data transceivers, and no
special fabrication technology is needed. Data are transferred
through magnetic field between two chips by overlapping a
transmitter coil over a receiver coil that are placed in different
chips. A pair of driver and inductor for sending data is called
the TX channel, while a pair of receiver and inductor for
receiving data is called the RX channel. An inductive coupling
channel is usually formed by a coil for the high-frequency
synchronization clock, and a coil for data transfer. A high-
frequency clock (1 - 8 GHz) is generated by a ring oscillator,
and the serialized data are transferred following the high-
frequency clock directly through the driver. Since this paper
focuses on the chip implementation and evaluation of SNACC
as a single chip, the detail explanation on TCI is omitted. For
more details on the TCI, please refer papers [7][8].

-63 -

TABLE I: Typical instructions supported by the core

inst description
loadi load immediate
bneq branch not equal
jump jump (PC-relative)
mad SIMD multiply-accumulate
madlp SIMD multiply-accumulate for loop
setcr set control register
addi add immediate
subi subtract immediate
sll shift left logical
srl shift right logical
sra shift right arithmetic
add add register
sub subtract register
mul multiple register
and and register
or or register
XOr Xor register
readcr read control register
dbchange | change double buffer
dma issue DMA request
loadv load vector
loadh load 16-bits data
loadw load 32-bits data
storeh store 16-bits data to WBUF
storew store 32-bits data to WBUF
TABLE II: Spec. of SNACC
Process Renesas 65nm DLSOTB_V3
CMOS 7 Metal
Area 3mm X 6mm
Chip Thickness | 80um
Target Freq. 50MHz

CAD Synopsys Design Compiler 2016.03-SP4

Synopsys IC Compiler 2016.03-SP4

D. Chip implementation

SNACC was implemented by using Renesas 65nm SOTB
process[9]. SOTB (Silicon on Thin BOX) is a low power
CMOS FD-SOI (Silicon on Insulator) process which can
control the threshold of transistors with body biasing. The
specification of the SNACC is shown in Table II.

As shown in Fig 3, it is implemented on the 3mm X 6mm
die. Red frames show four cores, and blue one is the TCI IP.

Fig. 3: The layout of SNACC

III. REAL CHIP EVALUATION
A. LeNet

In this paper, a simple CNN, LeNet, is used for evaluating
SNACC. For implementing more recent sophisticated CNNSs,
we are now developing programming environment[10]. How-
ever, now we rely on an assembly language. LeNet is an
old network proposed by Yann LeCun[11]. It consists of 6
layers: two convolution layers, two pooling layers and two
fully connected layers (classifier) as shown in Figure 4. Here,
we use “Max-pooling” for pooling layers. ReL.U and softmax
activation are introduced to generate the final results.

II__ ’_/ Re[Ll;oftmax
| Poo!ing] I!I___ ‘ !_\

Convolution Pooling Full connection

Fig. 4: The structure of LeNet

LeNet was proposed with the aim of the classification of
hand-written numbers, so we use MNIST datasets as input
image. The size of input images is 28 x 28. Figure 5 shows an
input image and inference result. The output data are generated
as a probability of possible candidates.

Input image Inference result

M)

Fig. 5: An example of input image

: 0.000000
: 0.000000
: 0.000000
:0.000017
: 0.000000
: 0.000000
: 0.000000
:0.999978
: 0.000000
: 0.000005

ooo~NOOUTA_AWNEREFO

Unlike the original LeNet, we used 20 x 3 x 3 convolution
kernel in the first convolution layer, and 50 x 20 x 3 x 3
convolution kernel in the second convolution layer. In both of
max-pooling layers, we adopt 2 x 2 kernel and set stride = 1.
We applied 500 x 1800 weights in the first fully connected
layer, and 10 x 500 weights in the second fully connected
layer.

To evaluate SNACC’s power consumption, we implemented
each layer with the assembly language for SNACC. Codel
shows an example assembly code for the first fully connected
layers. The meaning for each instruction in Code 1 is described
in Table L.

-64 -

Code 1: Assembly Code for the 1st fully connected layer

setcr, r4, 04,

setcr,rl,FF,

setcr,r2,08,

setcr,r3,08,

setcr, r6, 00,

xor, rTRO, rTRO,

xor,r0, r0,

loadi, r0,01,

s11,r0,18,//set dmem memory address

xor,rl,rl,

loadi, r1,05,

sll,rl,18,//set rbuf memory address

xor,r2,r2,

loadi, r2,09,

sll,r2,18,

Xor,r6,r6,

readcr, r6, r0,

xor,r7,r7,

loadi, r7,01,

sl1,r7,09,

mul, r6,r7,

add, r2,r6, //set wbuf memory address

xor,r3,r3,

loadi, r3,C8,

loadv, r0, rl,

madlp, r3, 00, //madlp calculation

storeh, rTRO, r2, //store value to wbuf

memory

28 xor, rTRO, rTRO,

29 addi, r2,02,//move pointer to next wbuf
address

30 loadi,rl, 64,

31 sl1,r1,04,

32 loadv,r0,rl,

33 madlp, r3, 00, //madlp calculation

34 storeh, rTRO, r2,//store value to wbuf
memory

35 halt, r0,rO,

N=R-CREEN e Y

RN NNN — — — = = = = = = =
NN R WD = O 000NN = O

B. Evaluation Environment

Figure 6 shows our evaluation environment in this work. We
set target board which inculde SNACC and FPGA equipped
with Artix-7 as host controler on the mother board.

Fig. 6: Evaluation Environment

C. Operational Frequency

Renesas SOTB 65nm LSTP(Low Standby Power) process
focuses on leakage reduction, and the operational frequency
is not so high even with 0.75V standard power supply volt-
age(VDD). Figure 7 shows the required supply voltage for
achieving the target operational frequency when using zero
body biasing and 0.4V forward body biasing. For achieving
higher operational frequency, we need to give large supply
voltage. SOMHz was achieved within 0.90V for all layers. As
shown in this figure, all layers required similar VDD to each
operational frequency.

Figure 8 shows the power consumption when each program
is working at the given operational frequency using zero body
biasing and 0.4V forward body biasing. It shows that the power
consumption for each applications is less than 12mW.

However, at each operational frequency, the convolution
layer achieved less energy than other layers, even though it is
said the convolution layer consumes larger energy than other
layers in general. It was caused by the low utilization of SIMD
units in this layer. Increasing it is one of our future work.

VDD min (V)
o o o
~N (-] o

o
@

o
o

I
IS

20 30 40 50
Operational frequency (MHz)

Convolution Layer —#—Pooling Layer =~ Fully connected Layer

—a— Convolution layer(+0.4) ~e—Pooling layer(0.4V) Fully connected layer(0.4V)

Fig. 7: The required VDD versus operational frequency when
using zero and 0.4V forward body biasing

Power consumption (mw)
o

20 30 40 50
Operational frequency (MHz)

Convolution Layer ——Pooling layer —#—Fully connected Layer

——Convolution layer(+0.4V) =e=Pooling layer(+0.4V) Fully connected layer(+0.4V)

Fig. 8: The power consumption versus operational frequency
when using zero and 0.4V forward body biasing

D. Leakage Current

The most important characteristics of the SOTB process
is high controllability of body biasing. There are a lot of

-65 -

studies to make the use of body biasing for the optimization
of power consumption[12]. However, recent SOTB (LSTP)
process shifts to reducing leakage power by increasing the
threshold of each transistor. Even with the zero bias, which
gives the same voltage as the GND (VBN=0) to NMOS and
VDD (VBP=VDD) to PMOS, the leakage current is quite
small. Figure 9 shows the leakage current versus the body
bias to NMOS (VBN). Here, we used the balanced bias, that
is (VBP = VDD-VBN), so only values of VBN are shown. It
is apparent that the leakage current is well suppressed even
with the strong forward biasing.

We can improve the operational frequency by giving the
strong forward biasing. From the evaluation, it appears that
the fully forward biasing improved the operational frequency
by about 15%. Considering the current increasing shown in
Figure 8, using forward body biasing is a better solution for
improving the energy.

1800
1600
1400
1200
1000
800
600
400
200

Leakage Current (uA)

0 0.2 0.4 0.6 0.8
VBN(V)

Fig. 9: Leakage current versus the body bias voltage

E. Performance evaluation using the forward body biasing

In this subsection, we evaluate SNACC with forward body
bias control. We used 0.2V and 0.4V forward body biasing.
From figure 7, in this case, we can see the required VDD
is lower than the case using zero body biasing. The same
frequency can be achieved less than 0.85V VDD with 0.2V
forward body biasing.

We suggested using body biasing is better solution for
improving the energy in the last subsection. It is certified as
shown in Figure 8 which shows the power consumption with
forward body biasing. In this case, SOMHz operation can be
achieved within 9mW for all layers even with 0.2V forward
body biasing.

F. Performance Improvement

Lastly, we evaluate the performance of SNACC from the
viewpoint of the execution time. We compared the SNACC
to the host processor, GeyserTT[13], which is a MIPS R3000
compatible embedded processor. Table III shows the execution
time of the convolution computation for a certain amount of
data. As shown in the table, SNACC achieved more than
20 times higher performance than GeyserTT. This is because
of the four SIMD cores and special instructions of SNACC.

From the result, the basic design concept of SNACC works
efficiently. Since the power of GeyserTT is about 30mW at
50MHz, the energy efficiency of SNACC is more than 30
times.

TABLE III: Execution Time

SNACC|ns] | GeyserTT[ns] | GeyserTT/SNACC

58,999 1,588,575 26.925

IV. CONCLUSIONS

In this paper, the real chip evaluation results of the convo-
lutional neural network accelerator, SNACC, were presented.
The simple CNN LeNet runs at S0MHz for all layers with
0.90V supply voltage. The power consumption is less than
12mW. The performance can be enhanced by the forward
body biasing about 15% in exchange for about 2mW leakage
increase. And we achieved making LeNet run at SOMHz for
all layers using under 9mW power consumption. SNACC
achieved more than 20 times higher performance to a MIPS
R3000 compatible processor GeyserTT.

This evaluation focuses on the single chip SNACC and
ignored the communication between host processor though the
TCI. Now, a chip stack with a host CPU of GeyserTT and a
SNACC chip is available. The whole system evaluation and
comparison with other CNN accelerators are our future work.
Developing programming environment is also our important
future work.

ACKNOWLEDGMENT

This work is supported by VLSI Design and Education
Center(VDEC), the University of Tokyo in collaboration with
Synopsys, Inc and Cadence Design Systems, Inc. Also, this
work is partly supported by JSPS Kakenhi (B) 18960959 Chip
stacking methods for Building Block Computing Systems.

REFERENCES

[1] Y.-H. Chen, T. Krishna, J. S.Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, 2017.

[2] Y. Chen and et.al, “Dadiannao: A machine-learning supercomputer,”
2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2014.

[3] S.Han, X.Liu, H.Mao, J.Pu, and A.Pedram, “Eie: Efficient inference
engine on compressed deep neural network,” 43rd Intenernational
Symposium on Computer Architecture, 2016.

[4] R.Sakamoto, R.Takata, J.Ishii, M.Kondo, H.Nakamura, T.Ohkubo,
T.Kojima, and H.Amano, “The design and implementation of scalable
deep neural network accelerator cores,” in Proc. of IEEE 11th Interna-
tional Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC-17), Sep. 2017.

[S] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Informa-
tion Processing Systems 25, pp. 1097-1105, 2012.

[6] C. Szegedy and et.al, “Going deeper with convolutions,” 2015 IEEE
Conference on Computer Vison and Pattern Recognition, 2015.

[7]1 Y. Take and et.al., “3-D NoC with Inductive-Coupling Links for
Building-Block SiPs,” IEEE Transactions on Computers (TC), vol. 63,
no. 3, pp. 748-763, Mar. 2014.

- 66 -

(8]

(9]

[10]

(1]

[12]

[13]

N. Miura and et al, “A Scalable 3D Heterogeneous Multicore with an
Inductive ThruChip Interface,” in IEEE Micro, Vol.33, No.6, 2013, pp.
6-15.

Takashi Ishigaki, et al., “Ultralow-power LSI Technology with Silicon
on Thin Buried Oxide (SOTB) CMOSFET,” Solid State Circuits Tech-
nologies, Jacobus W. Swart (Ed.), ISBN: 978-953-307-045-2, InTech, pp.
146156, 2010.

T.Okubo, M.Sit, H.Amano, R.Takata, R.Sakamoto, and M.Kondo, “A
software development environment for a multi-chip convolutional net-
work accelerator,” International Journal of Computer Application, June
2017.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. of the IEEE, Nov. 1998.

H. Okuhara, A. Ben Ahmed, and H. Amano, “Digitally assisted on-
chip body bias tuning scheme for ultra low-power vlsi systems,” IEEE
Transactions on Circuits and Systems I: Regular Papers., 2018.
S.Hamada, A.Koshiba, M.Namiki, and H.Amano, “Building block oper-
ating system for 3d stacked computer systems with inductive coupling
interconnect,” ISOCC, Dec. 2017.

-67 -

