R3-7

SASIMI 2021 Proceedings

Hardware/Software Co-Design of a Monte-Carlo Tree Search based
Reversi Player

Nobutaka Kito

Moeka Tsuji

Kyouka Tomioka

Department of Information Engineering
Chukyo University
Toyota, Aichi, 470-0343 Japan
nkito@sist.chukyo-u.ac.jp, {T318049, T318052}@m.chukyo-u.ac.jp

Abstract— A Monte Carlo Tree Search (MCTS)
based Reversi player is proposed for programmable
SoCs containing both a processor core and an FPGA.
It performs the tree search of MCTS with the proces-
sor core and simulates games with the FPGA by ran-
dom selections of legal positions to evaluate a board
in progress. The simulations are known as playouts of
MCTS and consume a long time. No domain-specific
knowledge other than the rules of Reversi is used for
the evaluation in the player. The circuit in the FPGA
is designed with high-level synthesis. It consists of
processing elements for playouts and performs play-
outs in parallel to evaluate a given board precisely.
The player was implemented for Xilinx Zynqg-7000 pro-
grammable SoC on Pyng-Z1 board. The evaluation
results showed that the number of playouts per sec-
ond with the circuit is 2.7 times higher than that of a
multi-threaded software implementation on Ryzen 7
3700X and showed that the designed Reversi player
may outperform existing Reversi players.

I. INTRODUCTION

Monte Carlo tree search (MCTS) [1] is a search algo-
rithm that combines a tree search and the Monte Carlo
method. It was utilized for computer Go players, com-
puter players of other board games, and computer players
of video games. Introducing it for computer Go players is
one of the major reasons why recent computer Go players
are strong [1]. MCTS utilizes a playout, i.e., a simulation
proceeding a game with random selections, to evaluate
a state, and uses only the result of whether the simula-
tion ends up in a favorable condition such as whether the
player wins, in general. Thus, we can use it for computer
players of games for which domain-specific knowledge is
not known. In this paper, we design an MCTS-based
player of Reversi for which domain-specific knowledge is
well known, and show that the hardware-accelerated Re-
versi player implemented without domain-specific knowl-
edge is not weak against existing Reversi players.

There have been several designs for realizing hardware-
accelerated Reversi players. In FPT2010, an Othello com-

petition has taken place and papers related to the com-
petition were presented [2, 3]. In [2], a domain-specific
knowledge such as mobility which is the number of legal
movements was taken into account. Hardware modules
for evaluating a given board and managing a board were
designed. In [3], a Monte Carlo based player has been
shown. The computer player was designed completely
as hard logic. The difference in the number of discs be-
tween the two players at the terminal game state was
used for evaluation. Recently, programmable SoCs con-
taining both a processor core and an FPGA were devel-
oped and commercial chips are available. In [4], a hard-
ware/software co-design of a Reversi player was shown. A
Reversi player employing domain-specific heuristics was
designed with high-level synthesis. Those previously pro-
posed players used domain-specific knowledge or the pure
Monte Carlo method which does not guarantee the best
selection. The strength of Reversi players implemented
without domain-specific knowledge or the limit of the
strength of players without domain-specific knowledge is
not well known.

We propose a hardware/software co-design of a Reversi
player utilizing the MCTS approach for programmable
SoCs. It determines the position to place a disc with the
combination of tree search and playouts, and does not use
domain-specific knowledge such as a well-known knowl-
edge: the corner positions of the board are important.
We can obtain the best selection with MCTS theoreti-
cally if we have enough time. Thus, we speed up the
processing with hardware. We perform manual co-design
for designing a Reversi player utilizing MCTS. In other
words, we assign operations of the player for hardware
and software manually. We assign the tree search part of
the player for the processor core and assign the playout
part for the FPGA in programmable SoCs. We design
a circuit performing a batch of playouts in parallel with
high-level synthesis to exploit parallelism in hardware.

We have implemented the design for Xilinx Zyng-7000
programmable SoC. The number of playouts per second
of the designed circuit was 2.7 times higher than that
of a multi-threaded software implementation on Ryzen 7
3700X processor. We evaluated the designed player by

- 156 -

Algorithm 1 Operations of Monte Carlo tree search

Generate root node vy and extend the node.
for time limit of the tree search do
vy < Select(vg)
vy < Expand(v;)
A + Playout(uvy)
Backup(v;, A)
end for
return the best child of vg.

comparing it with existing Reversi players which may
utilize domain-specific knowledge. The evaluation re-
sults showed that the implemented player may outperform
those players.

This paper is organized as follows. In the next section,
a brief review of Reversi and Monte-Carlo tree search
(MCTS) is presented. In Section III, a hardware/soft-
ware co-design of an MCTS-based Reversi player is pro-
posed. The playout processing circuit is shown. In Section
IV, the implementation details of the Reversi player, the
resource utilization, and the performance of designs are
shown. The comparison of the designed Reversi player
with existing Reversi players is also shown. In Section V,
this paper is concluded.

II. PRELIMINARIES

A. Reversi

Reversi is a board game for two players. The board
is divided as 8 x 8 grids. Players place discs on grids.
Usually, one face of a disc used in the game is light and
the other face is dark. Dark is assigned for the player
placing the first disc and light is assigned for the other.
Each player places a disc to show the face colored with
the player’s color. In this paper, we consider Reversi as
the same game as Othello.

Traditionally, computer Reversi players are mainly de-
signed utilizing domain-specific knowledge. It is well
known among Reversi players that placing discs on four
corner positions is important. During a search for the po-
sition to place a disc on computer players, boards are eval-
uated with some evaluation functions. Various domain-
specific metrics, such as the number of legal positions,
the difference in the number of discs between two players,
and the sum of the predefined evaluation values associ-
ated with occupied positions, are used to evaluate a given
board.

B. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) combines tree search
and the Monte Carlo method. The operations of MCTS
are described in Algorithm 1. As shown in the algorithm,
the four operations are carried out sequentially during the
assigned time for the search.

(b)

%-------

() (d)

Fig. 1. Operations in MCTS approach. (a), (b), (c), and (d)
correspond to the operations of Select, Expand, Playout, and
Backup, respectively.

At first, a path from the root node to a node is deter-
mined as shown in Fig. 1(a). In this step, a child node
is selected recursively until the most effective expandable
node is reached. In the figure, as an example, we append
a board of a Reversi game to each node to help under-
standing of the graph. A child node is added in Fig. 1(b).
Then, a game from the board corresponding to the node
is performed with a series of random selections of legal po-
sitions until the game ends. This operation is expressed
in Fig. 1(c) and is called as a playout. The value of the
playout is determined according to whether the player
wins (A = 1), draws (A = 0.5), or loses (A = 0). Finally,
with the value of A, the properties of the nodes on the
path are updated as shown in Fig. 1(d).

During searching a path in Select, the UCB1 value is
often used to select a child node. The tree search with
UCB1 has been named the UCT algorithm (Upper Con-
fidence bound applied to Tree algorithm) [5]. The UCB1
value for child node v; of node v is calculated as

X(v;)+c jgfj?

(1)

where X (v;) is the average evaluated value of v; through
playouts, and n(v) and n(v;) are the numbers how many
times v and v; are selected, respectively. The former term
of (1), in other words X (v;), intends to give priority to
nodes with high winning rates and the latter term of (1)

- 157 -

Listing 1 Abstract top-level design of the processing
circuit

uint PlayoutProcCircuit (board b){
uint loop, win=0, draw=0, res, seed;

for (loop=0; loop < N_LOOP;
seed = SEED_CONST + loop;

PlayoutPE(b, seed);

if(res == 1) win++;

if(res == 2) draw++;

}

loop++){

res =

return win + (draw<<8) + (N_LOOP<<16);
}

intends to give priority to nodes that are not selected
enough to prevent overlooking good paths. ¢ is a param-
eter to balance the two terms. If we have enough time,
we can obtain the best selection with the UCT algorithm
theoretically.

ITI. HARDWARE/SOFTWARE CO-DESIGN OF AN
MCTS-BASED REVERSI PLAYER

In this paper, we proposed a Reversi player for pro-
grammable SoCs containing a processor core and an
FPGA. At first, we show the partitioning of the player
into the software part for the processor core and the hard-
ware part for the FPGA. Then, we show the design of the
hardware.

A. Structure

We consider programmable SoCs which contain a pro-
cessor core and an FPGA as the target devices. The pro-
cessor is suitable for sequential operations which are hard
to process in parallel. The FPGA is suitable for simple
operations containing parallelism. In an MCTS-based Re-
versi player, there are two different types of operations:
the tree search and the playout. The tree search is se-
quential and is suitable for the processor. The playout is
a simpler operation than the tree search and it is suitable
for the FPGA. Therefore, we assign the tree search with
the UCT algorithm for the processor core and assign the
playout part for the FPGA.

B. Design of the Playout Processing Circuit

We design the playout processing circuit for the FPGA
with high-level synthesis. In the MCTS-based Reversi
player, the tree search program on the processor core as-
signs a board in progress for the playout processing cir-
cuit iteratively. Though the data size of a board is 128
bits (= 2 x 8 x 8) and is not large, transferring a board

Algorithm 2 Playout of the Reversi player
Require: board b, turn T
cl'urn < T
nP +1
while nP > 0 or nPrevP >0 do
P + searchLegal Positions(b, cT'urn)
(nP,nPrevP) < (|P|,nP)
if nP > 0 then
pos < P [random() mod nP |
placeDisc(b, pos, cTurn)
end if
cTurn <+ other(cTurn)
end while
if countDisc(b,T) > countDisc(b,other(T)) then
return player T won.
end if
if countDisc(b, T) = countDisc(b,other(T)) then
return player 7' drew.
end if
return player T lost.

O
+ @O
©|@

Fig. 2. Example of checking whether the position is legal.
Scanning of 8 directions is performed.

data from the processor to the FPGA consumes process-
ing time. We designed the circuit so that it performs a
batch of playouts at once to exploit parallelism in hard-
ware and decrease overhead caused by communication be-
tween hardware and software. We obtain a reliable eval-
uation result A of a board in progress by performing a
batch of playouts at once.

We show the abstract top-level design of the circuit for
high-level synthesis in Listing 1. We intend that the func-
tion PlayoutPE in the for loop is realized with N_LOOP
processing elements (PEs). We assign a different random
seed for each PE to perform different random selections.
We use a 16-bit linear feedback shift register to generate
pseudo random numbers in a PE.

Each PE performs one playout for a request from the
software. We show the steps of the playout of Reversi
in Algorithm 2. searchLegal Positions in the algorithm
searches legal positions to place a disc. It consumes a long
time. It checks each of 8 x 8 grids to determine whether
the position is legal to place a disc. In the checking of a
grid, we scan 8 directions as shown in Fig. 2. We scan each

- 158 -

Zyng-7000

Zynq PS Zynq PL
ARM AXI-Lite | P
Cortex-A9 < ayout
(Tree search and processing
<Etherne; HTTP server for UI) circuit

Fig. 3. Block diagram of the implementation.

TABLE I
FPGA RESOURCE UTILIZATION OF PLAYOUT PROCESSING CIRCUITS
(POST-IMPLEMENTATION RESULTS).

Available | 30 faster PEs | 90 slower PEs
LUT 53200 | 32655 (61.4 %) | 47326 (89.0 %)
LUTRAM 17400 | 1322 (7.6 %) 962 (5.5 %)
FF 106400 | 36701 (34.5 %) | 48169 (45.3 %)
BRAM 140 135 (96.4 %) 45 (32.1 %)

direction of the arrows for checking the grid of the gray
circle in the figure. We can decrease the overall processing
time by increasing circuit modules for the scanning of 8
directions.

Therefore, we can obtain various designs by changing
the following parameters.

e The number of PEs.

e The number of circuit modules for the scanning of 8
directions in a PE.

We can obtain a reliable evaluation value of a board by
increasing the number of PEs though the playout process-
ing circuit consumes more resources. We can shorten the
run time of a playout by increasing the number of circuit
modules for the scanning of 8 directions though each PE
consumes more resources.

IV. IMPLEMENTATION OF THE REVERSI PLAYER AND
EVALUATION RESULTS

We implemented the proposed Reversi player for Xilinx
Zynq-7000 programmable SoCs [6]. We used Xilinx Zynq
XC7Z020CLG400-1 on PYNQ-Z1 board. The SoC con-
tains two ARM Cortex-A9 cores and an Artix-7 FPGA.
Fig. 3 shows the block diagram of the implementation.
The ARM core in the Zynq PS part performs the tree
search and the Artix-7 FPGA in the Zynq PL part per-
forms the playout part.

We used VivadoHLS 2019.2 for compiling C descrip-
tions of the playout processing circuits and used Vivado
2019.2 for implementing them.

We designed two playout processing circuits with two
different PEs. One is a design with faster PEs and the

TABLE II
PROCESSING TIME OF A BATCH OF PLAYOUTS FROM THE INITIAL
BOARDS AND THE NUMBER OF PLAYOUTS PER SECOND.

30 faster PEs | 90 slower PEs
cycles 40,727 75,503
Time [us] 325.8 604.0
(in real system) (328.6) (606.8)
Playouts per second 92,077 149,001
(in real system) (91,308) (148,326)

other is a design with slower PEs. The faster PE performs
the detection of a legal position by scanning 8 directions
in parallel. The slower PE performs the detection by scan-
ning each direction iteratively. The slower PE is smaller
than the faster PE. We populated PEs as much as possible
for each design and populated 30 faster PEs for a design
and 90 slower PEs for the other. The number of faster
PEs was limited by the number of BRAMs. The clock
frequency of both two playout processing circuits was set
to 125 MHz. Table I shows the resource utilization of
them.

We evaluated the processing time of a batch of playouts
from the initial boards in which only 4 discs are placed.
Table II shows the results. The number of clock cycles
was obtained with VivadoHLS and is the average of three
executions. The number of playouts per second was cal-
culated with the number of PEs, the number of cycles,
and the clock period. The figures in parenthesis were ob-
served in designed systems by running a software calling
the circuits on Linux and are the average of many execu-
tions. As shown in the table, the design with the faster
PEs halves the processing time compared with the design
with the slower one. Note that the processing time of a
batch decreases as the game proceeds.

We also evaluated the number of playouts per second of
a software implementation on a computer with Ryzen 7
3700X processor and on PYNQ-Z1 board with ARM
Cortex-A9 cores. The figure of a single-thread software
implementation with the Ryzen processor was 18,560, and
that of a software implementation, which used 90 threads
for processing a batch of 90 playouts as the same as the
processing of the design with 90 PEs, was 54,520. Thus,
the figure of the design with 90 PEs was 2.7 times higher
than that of the multi-threaded software implementation
on the state-of-the-art processor. The figure of the single-
thread software and the figure of the multi-threaded soft-
ware with the Cortex-A9 ARM cores were 1341 and 1952,
respectively. The figure of the design with 90 PEs was 76
times higher than that of the multi-threaded software on
the processors in the same chip.

We described the tree search part and a user-interface
part of the player in C language. We compiled the pro-
gram with GCC for ARM processors. We used petalinux
2019.2 to build a Linux environment for the board. The

- 159 -

‘/‘(—xw > C 0 © | & 192.168.1.105:8080/boardo0000000000000¢ == & ¥ o e =

Reversi

Restart a game (from you)
Restart a game (from the machine)

Your discs: 4 The machine's discs: 8

Fig. 4. User-interface of the Reversi player.

clock frequency of the ARM cores was 650 MHz. We im-
plemented the user-interface of the Reversi player as an
HTTP server generating static HTML pages for games.
Fig. 4 shows the interface.

We show the result of comparing the Reversi player
with existing players in Table III. The player used at
most 7 seconds for each turn in the evaluation. We used
Sleipnir 4 as the Web browser on Xeon E5 1620v3 pro-
cessor for the existing players of [7] and [8]. We used the
same processor for WZebra 4.2.4 [9] which is known as
a strong player. WZebra is a customizable software. We
used three settings: the default setting, with the extra
large opening book provided in [9], and with the book
and the search depth of “8 moves + 16 perfect moves.”
We compared WZebra only with the design with 90 PEs.
As shown in the table, the Reversi players were stronger
than the novice computer player and the computer player
of hard mode though they were not stronger than existing
strong players. Thus, we realized a strong-enough Reversi
player with an entry-level programmable SoC chip with-
out domain-specific knowledge of Reversi.

We can realize stronger players by longer calculation
time. We compared a player with 90 PEs using 7 seconds
with a player with 90 PEs using 14 seconds. The player
with longer calculation time won 10 games and drew 10
games out of 20 games. The result suggests that we can
realize stronger players with faster programmable SoCs.

We evaluated the number of processed batches in the
design with 90 PEs during 7 seconds for deciding the first
position of a disc in an new game. The average number of

TABLE III
EVALUATION RESULTS OF 10 GAMES WITH EXISTING PLAYERS.

wins (proposed - existing
Players 30 faster(PEs 90 slower PE)ZS
MathsIsFun.com [7] 9-1 10-0
(hard mode)
Kuina-chan Reversi [§] 9-1 9-0
(novice mode) (1 draw)
Kuina-chan Reversi [§] 1-9 3-7
(Kuina-chan mode)
WZebra 4.2.4 (9] = 6-4
(default setting)
WZebra 4.2.4 [9] — 4-6
(w/ extra large book)
WZebra 4.2.4 [9] — 0-10
(w/ extra large book
and 8 move search)

processed batches in three trials was 12,110. This means
the average processing time of a pair of a batch and a
tree search was 578 us. The processing time of a batch
becomes smaller than one in Table IT because the tree
search determines positions of some stones. The average
time of a pair is also smaller than Table II. The result
suggests that processing time of the tree search is small
and the playout consumes a large part of the processing
time in early stages of a game.

The selection of a value for ¢ in formula (1) is impor-
tant for realizing a strong player. The value was not
constant in the player. We determined the calculation
method of the value empirically. We used the same cal-
culation method for both the design with 30 faster PEs
and the design with 90 slower PEs. Though the design
with 30 PEs was not stronger than one with 90 PEs in
the evaluation, it may vary depending on the calculation
method.

V. CONCLUSION

We proposed a hardware/software co-design of an
MCTS-based Reversi player for programmable SoCs con-
taining a processor core and an FPGA. We assign the
tree search part of MCTS for the processor core and as-
sign the simulation part, i.e., playouts, for the FPGA. We
design a circuit performing a batch of playouts in parallel
to exploit parallelism in hardware.

We implemented the Reversi players to Xilinx Zyng-
7000 SoC and evaluated the Reversi players by compar-
ing them with existing Reversi players which would utilize
domain-specific knowledge. Though an entry-level chip
was used in this evaluation, the Reversi players could win
such players. Therefore, this approach could be reason-
able for designing a strong player of games for which effec-
tive heuristics or domain-specific knowledge are not well

- 160 -

known.

ACKNOWLEDGEMENTS

We thank S. Sekishita, K. Terada, S. Nakata,
G. Mizuno, Y. Kato, and K. Niwa for their efforts in
Chukyo University.

REFERENCES

[1] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowl-
ing, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and
S. Colton, “A survey of Monte Carlo tree search methods,”
IEEE Transactions on Computational Intelligence and Al in
Games, vol.4, no.1, pp.1-43, 2012.

[2] J. Olivito, C. Gonzlez, and J. Resano, “FPGA implementation
of a strong Reversi player,” Proc. 2010 International Confer-
ence on Field-Programmable Technology (FPT), pp.507-510,
2010.

[3] M. Smerdis, P. Malakonakis, and A. Dollas, “CarlOthello : An
FPGA-based Monte Carlo Othello player,” Proc. 2010 Interna-
tional Conference on Field-Programmable Technology (FPT),
pp.515-518, 2010.

[4] P. Gangwar, S. Maurya, S. Garg, S. Goyal, A.S. Kumar,
P. Dalmia, and N. Pandey, “Hardware/software co-design of a
high-speed Othello solver,” Proc. 62nd International Midwest
Symposium on Circuits and Systems (MWSCAS), pp.1223—
1226, 2019.

[5] L. Kocsis and C. Szepesvéri, “Bandit based Monte-Carlo plan-
ning,” European Conference on Machine Learning 2006 Lecture
Notes in. Computer Science, vol.4212, pp.282—293, 2006.

[6] Xilinx, “Zyng-7000 SoC,” https://www.xilinx.com/products/
silicon-devices/soc/zynq-7000.html.

[7] “Mathsisfun.com - reversi,” https://www.mathsisfun.com/
games/reversi.html.

[8] “Kuina-chan board games,” https://kuina.ch/board_games/
play.

9] G. Andersson, “WZebra,” http://www.radagast.se/othello/
download.html.

- 161 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

