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Abstract -  On-chip learning is gaining attention in edge devices. 
In addition, a magnetic RAM (MRAM) is a promising memory 
technology for edge devices because of low leakage energy. 
However, the high write energy is a disadvantage of MRAM. For 
minimizing the write energy, we propose an approximate storing 
approach to MRAM for learning tasks of deep neural networks 
(DNN). The proposed approach writes the weight and bias data 
to NVM approximately on each epoch with the fine-grained 
adjusted write time. Simulation results with image recognition 
DNN applications have demonstrated the write energy can be 
reduced range from 9% to 37% while negligible (< 0.5%) 
accuracy loss. 
 

I. Introduction 
 

Edge computing devices are spreading world-wide at 
tremendous speed because of developing Internet of Things 
(IoT), smartphones and wearable devices. In addition, the 
effectiveness of machine learning (ML) such as deep neural 
network (DNN) has led to developing a lot of systems and 
services featuring DNNs. This trend also has led to increasing 
the researches to perform DNN tasks on edge computing 
devices. 

DNN tasks are divided into two main categories: learning 
and inference. Learning task on edge devices (on-chip 
learning) was considered unsuitable compared with inference 
task because of their high computational cost and enormous 
energy dissipation. Most of the researches did training task in 
cloud servers and did inference task on edge devices by 
transferring a training model from the cloud server. However, 
sending the private data to servers poses a security problem. In 
addition, transferring the input data captured at the edge device 
to the server and sending back the training model to the edge 
device consumes energy dissipation. Because of this, 
researches on on-chip learning with domain specific and 
private data have begun to emerge recently [1-2]. 

On-chip learning at edge devices requires more energy-
efficient technologies than the learning at the server, because 
the edge devices need to operate with limited energy. Another 
challenge is the memory capacity in on-chop learning. Since 
the learning tasks require the memory system for error 
propagation and weight updating, the memory capacity 
required for learning task is significantly greater than that for 
inference task [2]. Modern convolutional neural networks 
(CNN) which is one of the DNNs use millions of weights and 

activations, leading to critical challenges for both computation 
and data transmission [3]. 
 Under these circumstances, the memory system becomes 
more important in on-chip learning processors. In most 
computer systems, SRAM and DRAM are used for the 
memory systems. However, these have to be kept powered-on 
to keep the data, resulting in consuming energy. Dynamic 
energy for refresh operations in DRAMs and leakage energy 
in SRAMs are consumed during the power-on state. Due to the 
spread of IoT and mobile devices, lower energy dissipation is 
required, and hence new memory systems that consume less 
energy have been studied.  
 Among new memory systems, a non-volatile memory 
(NVM) especially employing a magnetic tunnel junction 
(MTJ) is promising technology [4]. MTJ has the property that 
the resistance value changes by manipulating the orientation 
of electron’s spin in magnetic materials. By taking the 
advantage of this property, MTJ can store data. In addition, 
MTJ can reduce leakage current compared to SRAM because 
data in MTJ is not lost even with power-off. As MTJ-based 
memory systems, a spin transfer torque magnetic RAM (STT-
MRAM) technology has been studied so far. However, MTJ 
has a disadvantage that the write operation consumes 
significantly larger energy than the read operation [5]. Hence, 
it is required to reduce the write energy in various aspects such 
as circuit structures, architecture and operation methods. 
 Approximate computing (AC) techniques reduce energy 
and execution time by allowing incorrect results using the 
property that information can be recognized in spite of noisy 
data. AC has been gaining traction as a computing paradigm 
for a wide range of cognitive applications that aim to extract 
deep insight from vast quantities of data. Since DNNs have 
robustness to noise and resiliency to numerical errors, 
researches on the application of AC to DNNs have been 
reported [6-7]. AC is also effective for memory systems. In 
particular, “precision scaling” is a well-known AC technique 
to be applied to memory systems. It allows us to reduce 
computation and storage resources by tailoring the bit width of 
data [8-9]. AC technique based on the precision scaling, which 
is related to the proposed approach, is discussed in Section 2. 
 In this paper, we propose an approach to augment the 
capability of the precision scaling to reduce the write energy 
of MRAM for DNN applications. The contributions of this 
paper are summarized as follows: 
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- We proposed a new energy-efficient approximate storing 
approach for MRAM. By employing precision scaling 
ideas, we split bits of the floating-point (FP) fraction part 
into groups and perform the write operation to each group 
with different write times to MRAM to minimize the write 
energy. 

- We applied the proposed approach to the learning task of 
DNNs on edge devices. The weight and bias data are 
stored in MRAM and repeatedly updated at every epoch 
by using the proposed approach. 

- We executed simulations using a statistical model for the 
write time of MRAM and three different network types of 
DNN. Through this simulation, we quantitatively 
investigated the trade-off between the write energy and 
accuracy when changing the write time and the bit groups.  

- We demonstrated that the proposed approach allows us to 
reduce the write energy by 25% in CNN and by 9% in 
MobileNetV2 with less than 0.5% accuracy loss as 
compared to a non-AC technique. By relaxing the 
accuracy loss to 7.5%, the write energy can be reduced by 
38% in CNN and by 19% in MobileNetV2 by the 
proposed approach. 
 

The rest of the paper is organized as follows: Section 2 
introduces the prior works. Section 3 describes a proposed 
precision scaling approach of FP numbers for MRAM. Section 
4 shows the application of the proposed approach to weights 
and bias data of DNNs. Section 5 describes the simulation 
setup for the evaluation. The results of simulation are 
presented in Section 6. Section 7 concludes the paper. 

 
II. Prior Works 

 
A. Precision Scaling for Floating-Point Number 
 

Nowadays most embedded applications involving 
numerical computations with large dynamic range are 
performed using binary64 (double-precision: “FP64”) or 
binary32 (single-precision: “FP32”) FP formats, described by 
the IEEE 754 standard. However, the execution of FP 
operations emerges as a major contributor to the energy 
dissipation. To provide a compromise between energy cost and 
dynamic range, IEEE 754 introduces a 16-bit format referred 
to as binary16 (half-precision: “FP16”). 

In recent ML researches, bfloat16 (16-bits brain floating 
point: “BF16”) was introduced as new FP types (Fig. 1 and 
Table I). The paper [10] described that its chief advantages are 
(i) ease of replacing FP32 by BF16 in DNNs while retaining 
correct DNNs operation, (ii) improved performance relative to 
FP32 due to greater memory bandwidth, (iii) software can 
easily implement BF16 with existing FP32 instructions using 
zero-padding for converting BF16 numbers to FP32 or 
masking and shifting for converting FP32 numbers to BF16. 
Although BF16 offers less precision than FP16, it is better 
suited to support deep learning tasks due to enough dynamic 
range [11].  

 
Fig. 1   Floating-Point Formats 

 
TABLE I   Dynamic Range of Floating-Points 

FP Type Min. Max. 
BF16 ≈ 9.2 × 10!"# ≈ 3.4 × 10$% 
FP16 ≈ 5.9 × 10!% ≈ 6.5 × 10" 
FP32 ≈ 1. 4 × 10!"& ≈ 3.4 × 10$% 

 
B. Quality-Configurable Non-volatile Memory 
 

Studies of employing bit precision AC technique for 
reducing energy of NVM systems have been reported. Ranjan 
et al. explored structures and characteristics of STT-MRAM 
and studied how to apply AC effectively [12]. They proposed 
a quality-configurable memory (QCMEM) which can control 
read/write current and period automatically by detected quality 
with the extended instruction set architecture. In [12], several 
approximate techniques for read/write operations have been 
described. Among them, we focus on the write energy in this 
paper. This is because the results in [12] showed that the write 
energy is one to two orders of magnitude larger than the read 
energy. 

To mitigate write energy, they experimented to reduce the 
write time in exchange for some write failures. In the 
experiment, they introduced an automatic tuning framework 
which can control output quality using the bit groups and the 
quality field and applied to ML processes. The bit group is a 
set of bit data obtained by dividing one data into several groups. 
For example, if there is 8-bit data, we can divide into 4 groups 
each of which has 2 bits. Needless to say, there are many 
positions for dividing bits. The quality field is designated to 
set the error probabilities for each bit group. They reported that 
the number of bit groups is an important parameter for 
controlling trade-off between the output quality and overhead 
to write. Although they set 4-bit groups in their experiment, 
the best way to divide bit groups was not discussed. 
 
C. Fine-Grained Splitting Bit Groups and Implementation 
 

To resolve the problem of [12], Authors of [13] proposed a 
new splitting bit groups for fine-grained precision scaling. 
They defined the “bit split position” (BSP) to realize fine-
grained and freely adjusting the position of the dividing bits in 
the integer value. By employing the precision scaling concept, 
they allowed the different write times for the bit groups split 
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by BSP. In addition, to implement the BSP approach to an LSI 
chip with non-volatile flip-flops (NVFFs), they also proposed 
the “store-domain” for setting the different write time for each 
group with simpler peripheral circuits than [12] and fit to the 
bit groups. The concept of store-domain was originally 
introduced in [14] to divide NVFFs into some groups and 
control them independently. Each store-domain can perform 
read/write (restore/store) operation independently. However, 
the target application in [13] was image data and image 
processing. 
 

III. Proposed Approach for Floating Point Numbers 
 

A. Splitting bit groups in Floating Point Fraction Part 
 

 First, we extend the BSP ideas to the fraction part in 
floating point numbers for DNN processes (Fig. 2). Like the 
approach in [13], there are only two groups of bits, the left 
group (Group L) and the right group (Group R), but we can 
adjust the position where to separate into groups. In Fig. 4, 
dotted arrows are the candidates of BSP. In this paper, the BSP 
is defined as the number of bits of Group R. With this splitting 
method, we investigated how adjusting the position of dividing 
the groups and the NVM’s write time for each group affects 
the trade-off between energy and test accuracy of DNNs.  

The main difference from [13] is the data types. Although 
they only considered the integer values for image processing, 
we propose an extension for FP for the DNN processes in this 
paper. From [11], the exponent part is more important than the 
fraction part in order to maintain dynamic range. Therefore, 
we apply BSP only to the fraction part. 

 

 
Fig. 2   Bit split position (BSP) for FP values 

 
B. Non-volatile Memory with Store Domain 
 

Because modern CNNs use millions of weights and 
activations [3], DNN processors especially treating the modern 
CNNs require a large-scale memory. Hence, in this paper, we 
chose STT-MRAM instead of non-volatile flip-flops as the 
memory system. However, The basic structure of STT-MRAM 
is depicted in Fig. 3. 

First, we allow it to control the write time for each store-
domain. Next, we assign a bit group to each store-domain. By 
these approaches, we can easily realize the bit groups and 
different write time for each bit group. Fig. 4 shows the 

conceptual diagram of assigning bit groups to store-domains. 
When Nf -bit fraction of FP data are store into NVFFs, it is 
divided into Group L and Group R. Data assigned to Group L 
are written to one of the store-domains (e.g. store domain No. 
0) to use the “long write time”, while data assigned to Group 
R are written to another store-domain (e.g. store domain No. 
1) to use the “short write time”. 

 

 
Fig. 3   Spin transfer torque (STT) MRAM 

 

 
Fig. 4   Assigning bit groups to store domains 

 

IV. Application of Proposed Approach to DNNs 
  
 In this chapter, we describe how to achieve low energy 
dissipation using the proposed approach for DNN 
applications. We also describe the advantage of applying 
this approach to DNNs. 
 
A. Learning vs. Inference 
 

In this paper, we focus on the learning tasks rather than 
the inference tasks in DNNs. In DNN processes, memory 
accesses for the inference tasks are mainly reading weights 
and biases. There is few write operation to update them. 
Meanwhile, the learning tasks perform the write operation 
at backpropagation and updating weights. In addition, even 
if an instantaneous power surge occurs during the training, 
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the updated weight data are retained in the NVM and does 
not volatilize. It is advantageous to allow us to resume the 
training from the timing of the power surge. Therefore, we 
chose the learning tasks as a target of the proposed approach. 

  
B. Target Data for Approximate Storing 

 
We restrict the data stored in MRAM to the weight and 

bias data in this paper. The capacity of MRAM is not 
enough to store all neural data while learning tasks. [15] 
reported the implementation of 1Gbit (≈128Mbyte) STT-
MRAM in 28nm FDSOI technology. However, all neural 
data of modern DNNs require the memory capacity on the 
order of gigabytes depending on the input data size and the 
batch size. The weight and bias data are in the order of 
megabytes. 
 

V. Simulation Settings 
 
A. Device-level Settings 
 

In a pre-processing, we evaluated the write energy 
dissipation per an MTJ by SPICE simulation in a 65nm process 
technology. The supply voltage VDD was assumed to be 1.2V. 
All memory data was initialized to “0” in preprocessing. In 
addition, we specified the distribution function for Tth 

variations. We defined Tth as the threshold time for the 
successful write operation to MTJ. If the write time is longer 
than Tth, we assumed that data are successfully stored, 
otherwise it fails. Among proposed distribution functions for 
the write time of STT-MRAM, we chose the simplest model 
[16] to use a normal distribution in our experiment. We 
assumed that Tth varies in a normal distribution with the 
average value of 8ns and the standard deviation σ of 3ns.  

It is also important to set candidates of long and short write 
times. TL is defined as the long write time for Group L and TR 
is defined as the short write time for Group R. Fig. 5 shows the 
error rate of an STT-MRAM as a function of the write time. 
The error rate is 0.004% when it is set to 15ns. By considering 
recent MRAM papers [17-18], we assume that an MRAM is 
made to operate at the clock frequency of 200MHz. Since the 
clock cycle time is 5ns, we control TL and TR in multiples of 
5ns. TL requires 20ns as reported in [13] to maintain lower 
error rates for higher bits in data. In addition, because the error 
rate of 15ns is very close to that of 20ns (Fig. 5), we omitted 
15ns for the candidate of TR. Therefore, we chose 20ns for TL 
and [10ns, 5ns, 0ns (No write)] for TR. 

 

 
Fig. 5  Write time vs. error rate of an STT-MRAM 

B. System-level Settings and Application Benchmarks 
 

We employed TensorFlow to perform DNN applications.  
TABLE II summarizes the application benchmarks of image 
recognition that we used in this paper. We prepared 60,000 
training data and 10,000 test data at every benchmark. The 
total epoch count was set to 20 and the batch size was set to 
128. We simulated the system on an Intel i9-10900K CPU and 
two Nvidia GeForce RTX 2080 Super GPUs (linked by 
Scalable Link Interface) with the Ubuntu 20.04 LTS Operating 
Systems.  

The flow of approximate storing is the following: (i) we get 
the weight and bias data of the model for each epoch, (ii) the 
data are decomposed into bit data, (iii) the success or failure of 
the store are determined based on the write time and BSP 
settings, (iv) writing back the weight and bias data to the model. 
We built this flow into the TensorFlow processes and 
performed it on every epoch.  

In addition, our target is on-chip learning. We require a data 
format with low energy even if we ignore some accuracy 
degradation. Because of this, we set FP type to BF16 when 
getting weight and bias data in the simulation. Therefore, the 
fraction part has 7 bits (Nf = 7 bits). 

 
TABLE II   Application Benchmarks 

Network Type Layers Dataset Params* 

Multi-layer Perceptron (MP) 3** MNIST 118K 
CNN 4*** CIFAR-10 122K 

MobileNetV2 (MN) [3, 19] 16**** Fashion-MNIST 719K 
*  Parameters include weights and biases 

**  The number of Fully Connected layers 
***  The number of Convolutional layers 
****  The number of Residual bottleneck layers [19] 
 

VI. Results 
 
A. BSP vs. Test Accuracy 
 

Fig. 6 shows the test accuracy for BSP. The basic trend of 
all network types is that the test accuracy becomes higher 
when BSP gets closer to the MSB side (7) and that becomes 
lower when BSP gets closer to the LSB side (0).  

The accuracy shows a similar trend for Multi-layer 
Perceptron (MP) and CNN. When TR = 0ns (blue dots) and 5ns 
(green square), the accuracy of MP and CNN at BSP = 6 or 7 
is decreased. Meanwhile, those of MobileNetV2 (MN) is 
different. When TR = 0ns (blue dots) and 5ns (green square), 
decreasing the accuracy occurs at BSP = 4 to 7. In addition, 
when TR = 10ns (pink triangle), it occurs at BSP = 5 to 7.  

Moving BSP to the MSB side and the fewer TR mean that 
the low-precision bits are not accurately stored and truncated. 
Therefore, for MP and CNN models, we have estimated that 
the accuracy is maintained without writing correct data 
because they have a common thing that they have fewer layers, 
fewer parameters and a simple model structure. In contrast, 
MN model, which has a lot of parameters and a complex 
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structure, seems to be required the more precision. The LSB-
side bits require to be written precisely for complex network 
types. 

The dataset type is related to the range of the test accuracy. 
Meanwhile, by comparing with MP and CNN, MNIST is a 
simple dataset, but CIFAR-10 is a complex dataset. Hence, the 
dataset type may not affect the trend of BSP. However, it 
should be noted that the image size of datasets affects BSP 
since the large image size leads to large parameters and a 
complex model. In addition, it also should be noted that FP32 
may be required for more complex network types and the large 
size datasets. 

 

 
(a) Multi-layer Perceptron (MP) 

 

 
(b) CNN 

 

 
(c) MobileNetV2 (MN) 

Fig. 6  BSP vs. test accuracy for each network 
 
B. Epoch vs. Test Accuracy 
 

Fig. 7 shows the test accuracy of each epoch. In MP and 
CNN, the accuracy has improved with progression of epochs 
and has been converged. In addition, the accuracy is affected 
by BSP and TR and decreases from the original (i.e. writing all 
bits with 20ns) in particular when BSP gets closer to the MSB 

and TR gets closer to 0. In contrast, the accuracy of MN when 
BSP = 4 and TR = 0ns or 5ns moves up and down and does not 
converge. Complex models require the carefully settings of 
BSP and the write time. 

We tried the simulation to investigate whether toggling 
on/off of the approximate storing by epochs could further 
improve energy efficiency. However, it did not lead to 
improvements in the write energy. 

 

 
(a)  Multi-layer Perceptron (MP) 

 

 
(b)  CNN 

 

 

 
(c)  MobileNetV2 (MN) 

Fig. 7  Epoch vs. test accuracy for each network 
 
C. Energy Dissipation 
 
 TABLE III shows BSP and the write time to minimize the 
write energy in BF16 and Fig. 8. shows the total write energy 
when using BF16. The described energy is normalized to the 
case with no approximation. Accuracy Constraints is defined 
the difference of the test accuracy from no approximation. 
 Across all benchmarks, the proposed approach achieves 
total energy benefits ranging from 9%-38% for virtually no 
loss (< 0.5%) in the test accuracy. When the accuracy 
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constraints are relaxed to < 2.5% and < 7.5%, the energy 
benefits further increase to 13%-44% and 19%-44% 
respectively. The proposed approach achieves 21-86% write 
energy reduction in only the fraction part for virtually no loss 
(< 0.5%). 
 The majority of settings for energy minimization are TR = 
0ns. Meanwhile, to achieve accuracy constrains < 0.5% in MN, 
we require to set BSP = 2 and TR = 5ns. We found that some 
low-precision bit writing is necessary for complex models. 
 

TABLE III   BSP and Write Time for Energy Minimization 

Type MP CNN MN 
Acc. 

Const.* <0.5% <2.5% <7.5% <0.5% <2.5% <7.5% <0.5% <2.5% <7.5% 

BSP 6 7 7 5 6 7 2 2 3 
TR (ns) 0 0 0 0 0 0 5 0 0 
 

 
Fig. 8  Minimum Write Energy on BF16 

 
VII. Conclusions and Future Works 

 
For on-chip DNN learning, MTJ-based NVM systems 

are a promising component on future edge devices. 
However, MTJ-based NVM has a problem that the write 
energy is high. Therefore, we proposed an energy efficient 
approximate storing approach to reduce the write energy of 
NVM. We used the concept of precision scaling for the 
floating-point fraction part and applied it when writing weights 
and biases to NVM in the DNN learning tasks. We clarify that 
a lot of write energy can be reduced maintaining the test 
accuracy by applying the appropriate settings to each network 
type. As the future work, we will make an actual chip 
implementation of this system. In addition, we will investigate 
the advantage of preparing more than 2 BSPs, which could 
lead to further improvement in energy dissipation. 
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