
A Hiding External Memory Access Latency by Prefetch Architecture for

DNN Accelerator Available on High-Level Synthesis

Ryota Yamamoto Shinya Honda Masato Edahiro

Graduate School of Informatics Faculty of Science and Engineering Graduate School of Informatics
Nagoya University Nanzan University Nagoya University

Nagoya, Aichi 464-8603, Japan Nagoya, Aichi 466-8673, Japan Nagoya, Aichi 464-8603, Japan
muku@ertl.jp shonda@nanzan-u.ac.jp eda@ertl.jp

Abstract— In recent years, there has been a demand for deep

neural network (DNN) inference applications in embedded sys-

tems. We are developing a framework to design hardware (HW)

on an FPGA for DNN inference. Although low-end FPGAs are

needed to reduce the cost, FPGAs have limited internal memory

(Block RAM, BRAM). Therefore, it is necessary to use SDRAM

instead of BRAM, but to speed up the access to SDRAM, a

prefetcher is needed that can be used in the system-level design.

In this study, we designed a prefetch architecture in a system-

level design environment that can be easily implemented in C code

for high-level synthesis. We propose a method of storing data

in the BRAM by transferring the data in a burst. We designed

DNN inference HW with external memory (SDRAM) access us-

ing prefetch architecture. As a result, the prefetch design is faster

than cases using BRAM or SDRAM. In particular, it is found that

the performance is up to a factor of 10 faster than that of SDRAM

access without prefetch.

I. Introduction

In recent years, there has been a demand for deep neural
network (DNN) inference applications in embedded systems.
For embedded systems, owing to performance requirements,
FPGAs are expected to be used for DNN inference processing.
However, there are resource constraints in terms of memory
capacity and power consumption. Hardware (HW) for specific
operations can be realized using FPGAs, and applications can
be developed with high computational cost. However, there is
an issue that the development work time increase due to the
high expertise of FPGA development. Given this background,
DNN frameworks based on FPGAs have been actively studied
[1, 2, 3, 4, 5].

To decrease the development cost and degree of expertise
required in FPGA development and to facilitate the co-design
of HW and software (SW), we have developed SystemBuilder,
a system-level design environment [6, 7, 8]. SystemBuilder
takes C source code for high-level synthesis (HLS) and system
configuration files as input, and it outputs an executable for a
CPU and a bitstream for an FPGA. An overview of System-
Builder is shown in Fig. 1. As described in detail in Section
2, SystemBuilder provides communication primitives that en-
able communication between processes. The communication

�������	�
����
�������	�
����

���������

	�
���

��� ����

���

����������������
�������

�� 	���

������

���

���	��

���

���

�������	���

���

�������	
�

�� �

!"�

����

!"��

��������

Fig. 1.: SystemBuilder flowchart

primitives have interprocess communication and memory ac-
cess communication.

Table I presents an example of FPGA specifications for each
grade1. As this table shows, it is difficult to place all the
weights on a low-end chip with less than a few megabit capac-
ity. Table II lists the number of weights of the popular DNNs
[9]. Here, by converting the number of weights in the table to
data size, for example, by assuming that the weights are single-
precision floating-point (32-bit), the most numerous parameter
in this table is 4,672 Mb for Overfeatfast, which means that
even high-end FPGAs cannot store the data in their BRAM.
Even Lenet5, which has the smallest number of parameters in
this table, has 1.875 Mb, which means that the BRAM is insuf-
ficient in some cases in low-end FPGAs. Therefore, although
some high-end FPGAs have several hundred MB of BRAM,
a large DNN may require the use of SDRAM in some cases.
As a result, SDRAM accesses are required, and the overhead
of such accesses has a negative effect on the overall system la-
tency and throughput. Therefore, because a DNN application
needs to store a large amount of weights, they are placed in
SDRAM to execute the inference, SDRAM access slows down
the execution speed, even when using FPGAs.

We have developed a communication primitive to hide the

1Table I was created by referring to https://www.digikey.com/ (ac-

cessed on October 26, 2020).

SASIMI 2021 ProceedingsR4-6

- 213 -

TABLE I

: FPGA specifications

Vender Chip BRAM Size (Mb) Price

Xilinx XCVU190 132.9 $32,605

Intel 1SD280PT 240.1 $209,662

Xilinx XC7Z020 4.9 $114

Intel 5CSXFC2C 512 $89

TABLE II

: Number of weights in popular DNNs

Name Size

Lenet5 60k

AlexNet 61M

Overfeatfast 146M

VGG16 138M

GoogLeNetv1 7M

ResNet50 25.5M

memory access latency by a prefetch architecture to solve the
SDRAM access bottleneck in DNN inference. This commu-
nication primitive can be called from C with hiding the HDL,
so that it can be easily used in high-level synthesis. Prefetch
architecture takes advantage of the fact that the weights of the
DNN are used fixed value cyclically. The hardware can re-
ceive data from the buffer rather than SDRAM accesses, thus
reducing the latency of SDRAM accesses.

The contributions of this study are as follows:

• Prefetch architecture is implemented so that System-
Builder can automatically generate HDL and communica-
tion interfaces for it, which can be easily generated from
C.
• A case study demonstrates that SDRAM accesses using

prefetch architecture are faster than BRAM and SDRAM
accesses without it.
• The case study shows that, even if the number of master

interfaces (MIFs) is reduced, the increase in HW latency
can be reduced.

II. SystemBuilder

A. Overview

SystemBuilder is a system-level design environment that en-
ables the co-design of SW and HW [8]. The level of design
abstraction between SW and HW can be increased, and the de-
sign can be performed without considering the design as HW,
compared to the design with HDL. The advantages of System-
Builder are that the developer does not have to implement com-
munication for inter SW-SW, HW-HW, and SW-SW, and that
the HW is designed without considering it as a HW design
compared to the design with HDL by increasing the abstract-
ness of the design.

SystemBuilder provides the following features:

• C simulation,
• SW–HW co-simulation,
• a communicator module and a communication I/F gener-

ator,
• an executable for the CPU generator, and

• a bitstream for the FPGA generator.

As shown above, SystemBuilder can be integrated with various
simulation environments and can be verified without using an
actual device.

SystemBuilder generates the files for HLS and logic synthe-
sis (for HW) and compilation (for SW) from the system de-
scription, as shown in Fig. 1. The HW and SW specifications
are defined by the process. The ‘process’ in this paper is de-
fined as each module that divides the system into functional
units.

Next, there are the input files of SystemBuilder. The input
files are the C source file and the system definition file (SDF).
The HW or SW process is described in C source code, and the
SDF defines the configuration of the entire system, including
processes and channel definitions. SDFs are written in YAML
format and contain the following information:

• process type (HW or SW) definition,
• shared memory definition,
• communication primitives (channel) definition, and
• process definition.

Process Type Definition Developers can specify whether the
process is executed as HW or SW. This definition determines
whether each portion of C code is treated as input to the HLS
or to the compiler.
Shared Memory Definition When using the memory (MEM)
channel or the prefetch channel proposed in this study, the de-
velopers can define the SharedMemory. It specifies the address
of the memory to be treated as the common memory and de-
fines the access port required to create the HW routing infor-
mation. The definition of shared memory includes the start
address and the depth of the shared memory that can be used
in the MEM channel.
Communication Primitives (Channel) Definition Develop-
ers can describe the definition of communication primitives
described in Section B. This definition includes the data size
(depth) and memory size to be allocated.
Process Definition Developers can specify the top function to
be specified as a process and the source file name that con-
tains the function. The channels used in the process with the
direction can also be defined.

By inputting these definitions to SystemBuilder and C files
for HLS, or for compilation, the simulation files can be gener-
ated.

The generated C files for HLS are input to HLS tools such as
CyberWorkBench (NEC) and eXCite (YXI) to perform HLS.
Additionally, we have enabled Vivado HLS (Xilinx), an HLS
tool that can be used free, on SystemBuilder. The HLS tool
generates the HDL corresponding to the input C file. System-
Builder also generates HDLs for bus access and communica-
tion I/F and hardware-top HDLs, and these HDL files are used
for logic synthesis.

Logic synthesis is currently supported by Quartus Prime (In-
tel) and Vivado (Xilinx). With these, HW processes can be
designed by these tools.

Moreover, developers can build the files generated for the
SW by using the compiler of the target CPU. In SystemBuilder,
the SW process is built as a μITRON-based or an AUTOSAR-
based RTOS application, and an executable file is generated.

It can be executed by writing the bitstream for the HW and
the SW executable file generated by the above to the actual
device.

- 214 -

TABLE III

: Communication primitives available in SystemBuilder

Primitive Name Description

BC (Blocking Channel) This channel can send and receive one data at a time and is equivalent to a FIFO. The receiver waits

for reception while the FIFO is empty, and the sender waits for transmission while the FIFO is full.

NBC (Non-Blocking Channel) This channel can send and receive one data at a time and is equivalent to a register. There is no

waiting for transmission and reception.

MEM (MEMory Channel)
This channel is given an offset value to the address specified in the SDF and can send and receive

data at the specified address in a single communication.

There is no waiting for transmission and reception.

FPGAExternal
MEM

CPU
ON_CHIP
MEM

SoC

DNN

… … … …

Fig. 2.: SDRAM access by the MEM channel

B. Communication Primitives

The communication primitives for interprocess communica-
tion provided by SystemBuilder are given in Table III.
Blocking Channel (BC) The BC is a channel that can commu-
nicate one data of 8, 16, or 32 bits. This channel is regarded as
a FIFO in HW, and the depth of the FIFO may be specified. If
the FIFO is empty, the receiver process waits to receive. How-
ever, if the FIFO is full, the sender process waits to send. To
use the BC from C, developers can use two APIs, one for trans-
mission and the other for reception. In each case, the argument
is passed as data for transmission or as the address of a variable
that stores the data to be received.
Nonblocking Channel (NBC) The NBC is a channel that can
communicate one data of 8, 16, or 32 bits. This channel is re-
garded as a register in HW. The NBC is just a variable in SW,
and the receiver process obtains the value stored in the NBC at
a time that is not synchronized with the sending process. More-
over, the sending process writes the value asynchronously. The
NBC is the same API as the BC in the C language.
MEM Channel The MEM channel is a channel that can com-
municate one data of 8, 16, or 32 bits, and this communication
is asynchronous. The MEM channel differs from the NBC in
that an offset value is given for a statically assigned address,
and data access is provided to a specific address. This chan-
nel can access both SDRAM and BRAM. The MEM channel
transmits and receives only one data at a time in the case of
SDRAM access (even BRAM access), as shown in Fig. 2. This
leads to the disadvantage of increasing the latency of memory
accesses because of the latency of the MEM channel.

III. Characteristics and Requirements for SDRAM Access
in DNN Inference

As described in Section I, to implement DNN inference in
an FPGA, it is sometimes necessary to place trained data, such
as weights, in SDRAM. Therefore, it is important to consider
the characteristics of weights and SDRAM accesses to provide

a background to the HW for better DNN inference. In terms of
weights and SDRAM access, DNN inference has the following
characteristics:

C1 In each case, the weights are not able to be stored in the
BRAM.

C2 The order of weights is constant for each layer.
C3 Each layer in the DNN inference reuses weights cyclically

each time it finishes processing all the input given for that
layer.

C4 To perform the filtering, only the weights of the filter size
are used at a time.

C5 After convolving to the end of the input, the weights are
unnecessary until the next input is given.

From these characteristics, the requirements for SDRAM
access in DNN inference are as follows:

R1 A part of the weights is temporarily stored in the BRAM.
R2 The weights stored in the SDRAM are acquired in the or-

der in which they are stored.
R3 When the weight to be used in the layer has been read to

the end address, then reload weight from the start address.
R4 The number of communication cycles can be reduced by

acquiring a filter size or one side of a filter size at a time
in a single communication.

R5 It is unnecessary to store the weights that have already
been used.

In addition to these requirements, we use high-level synthesis
to consider its use in SystemBuilder. If HLS is assumed, the
following is required:

R6 The hardware modules for memory access are hidden and
should be easily available through the C API.

As an architecture that satisfies these requirements, a cache
architecture could be implemented; however, because of them,
a mechanism as complex as a cache mechanism is unnecessary.

IV. PrefetchMechanism

This section describes the specifications of the prefetch
blocking channel (PFBC) introduced into SystemBuilder. Fig-
ure 5d shows the mechanism of the PFBC for HW processes,
and Figure 5c is SDF for the PFBC. PFBC is introduced as one
of the communication primitives of SystemBuilder. As men-
tioned above, the purpose of the PFBC is to fulfill R1–R6.

There are the following parameters for the PFBC:

• data size (selectable from 8, 16, and 32 bits),

- 215 -

FPGAExternal
MEM

CPU
ON_CHIP
MEM

SoC

DNN BRAM

MIF

… … … …

Burst
transfer

When the MIF is shared by
multiple PFBCs,
SystemBuilder arbitrate
MIF access.

PFBC HW

Fig. 3.: MIF collision because of sharing of the MIF by PFBCs

• vector size (can be specified from 2 to 16),
• data block depth,
• FIFO (internal buffer) depth,
• bit width for burst transfer (up to 256 in power of 2),
• enable/disable auto reload feature,
• data location (e.g., SDRAM), and
• MIF assignment.

In Fig. 5d, it is assumed that the data are placed in the
SDRAM by the CPU pictured in Fig. 4a, and the number of
data of the size specified by the data size multiplied by the vec-
tor size and data block depth is placed in the SDRAM. After
that, the FIFO with the depth specified by the FIFO depth ex-
ists for the vector size, and the data are stored in the FIFO by
burst transfer, as shown in Fig. 4b. Finally, the data stored in
the BRAM are transferred by the BC to the HW process by the
number of vectors at a point in time, as shown in Fig. 4c. At
this time, the data retrieved by the process are deleted from the
FIFO, and the vacant area is further loaded with data from the
SDRAM by burst transfer. The PFBC also has a function to
automatically reload the data when the final data (the (ID-1)th
data) is read; after the final data is read, it automatically reads
the first data. Note that the Master Interface (MIF) for access-
ing the memory must be specified. And multiple PFBCs can
be assigned to a single MIF (Fig. 3). SystemBuilder automati-
cally determines when each PFBC uses the MIF.

The reading data from SDRAM by the PFBC is performed in
the background of the HW process operations. Therefore, for
DNN inference, the HW process only retrieves the data from
the BRAM because the data necessary for the operation are
already stored in the BRAM. The PFBC thus takes advantage
of the fact that the parameters of DNNs are always used in a
certain order (C3). Therefore, continuous data acquisition by
burst transfer is effective; however, this feature is not consid-
ered to be effective for operations used in a random order.

Figure 5 shows an example of the SDF and C description for
the PFBC. In the SDF, developers can describe the configura-
tion for the PFBC and MIF. Developers can also describe the
HW description in C. In the figure, L0 COEF PF READ is an
API to read vector data from SDRAN by HW; this corresponds
to Fig. 4c.

Next, we explain how to use the PFBC for both SW and HW
processes. The PFBC is a different interface from SW and HW
processes. For the SW process, it is possible to read and write
as well as use MEM; however, for the HW process, it is only
possible to read. Therefore, the SW process writes the data
that HW reads by using the PFBC, and the HW retrieves those
data when the process needs them.

The required usage of BRAM can be adjusted according to
the FIFO depth and vector size. Therefore, it may be possible
to implement large-scale DNNs that have not been possible in
the past on smaller FPGAs in the future.

FPGA External
MEM

CPU
ON_CHIP
MEM

SoC

DNN
BRAM

… … … …

Vector Size

Data
Block
Depth

(a) Writing weights from the CPU to an SDRAM (with a vector size

of 4)

FPGAExternal
MEM

CPU
ON_CHIP
MEM

SoC

DNN
BRAM

FIFO
depth

MIF

… … … …

Vector Size

Data
Block
Depth

Burst
transfer

(b) Burst transfer to BRAM

FPGAExternal
MEM

CPU
ON_CHIP
MEM

SoC

DNN
BRAM

FIFO
depth

MIF

… … … …

Vector Size

Data
Block
Depth

Burst
transfer

(c) Sending to the HW process and prefetch from an SDRAM

Fig. 4.: Overview of the PFBC mechanism for the HW process

Compared with the method proposed in this study, Wei et al.
proposed a DNN inference for FPGAs that implements weight
buffer prefetching and focuses on memory access [10]. They
devised a method to hide the memory access time while execut-
ing other layers of processing, focusing on the execution time
of each layer. In this study, we do not use the hiding method
of memory access latency as in Wei et al. However, prefetch
is automatically performed when the value is taken from the
internal buffer, and users can use the prefetch architecture with
simple notation. Although the possibility of consuming a large
amount of memory access bandwidth is considered a disadvan-
tage of our method, we can adjust the number of data retrieved
from memory when prefetching by setting upper limits on vec-
tor size and FIFO size. Specifically, the vector size is limited
to a maximum of 10, and the internal buffer depth is limited
to a maximum of 1024. However, by setting these numbers,
the PFBC used at each layer can also limit excessive memory
accesses.

V. Case Study

We used a handwritten numeric image (MNIST) inference
program. This program was created by Nakahara et al.2. This
program has a five-layered DNN with binary activations and
8-bit integer weights. The baseline for this case study is an op-
timized description with loop folding and other optimizations.
The structure of the network is given in Table IV. Addition-

2http://www.cqpub.co.jp/interface/download/contents.htm

- 216 -

MIF:
- {id: 1, mem: [l0_coef_pf]}

MemoryChannel:
- {name: l0_coef, size: 8, depth: 150, loc: sdram}

(a) SDF for MEM

for (i = 0; i < L0_KSIZE; i++){
for (j = 0; j < L0_KSIZE; j++){

L0_COEF_READ(dmap * L0_KSIZE * L0_KSIZE + i * L0_KSIZE + j, &ui);
coef_w_fmap[i * L0_KSIZE + j] = (int8)ui;

}
}

(b) C for MEM

MIF:
- {id: 1, mem: [l0_coef_pf]}

PreFetchBlockingChannel:
- {name: l0_coef_pf, size: 8, vsize: 5, depth: 30, burst_len: 256, fifo_depth: 15, loc: sdram, auto_reload: }

(c) SDF for PFBC

for (i = 0; i < L0_KSIZE; i++){
ui = i * L0_KSIZE;
L0_COEF_PF_READ((uint8 *)&si[0], (uint8 *)&si[1], (uint8 *)&si[2], (uint8 *)&si[3], (uint8 *)&si[4]);
for (j = 0; j < L0_KSIZE; j++){

coef_w_fmap[ui + j] = si[j];
}

}

(d) C for PFBC

Fig. 5.: Example of HW description for memory access MEM and PFBC

TABLE IV

: Number of weights in the target network

Name Weights

Layer 0 (convolution) 150

Layer 1 (average pooling) 24

Layer 2 (convolution) 2,400

Layer 3 (average pooling) 64

Layer 4 (convolution) 48,000

Layer 5 (fully connected) 1,200

ally, Fig. 5 shows an example description of the SDF and HW
C code, which defines and uses MEM and the PFBC.

Although the original implementations can store all weights
and feature image data in the BRAM, to evaluate the effective-
ness of the PFBC, in this study, all the weights of these layers,
except layer 2 and layer 5, are placed in SDRAM. There are
several reasons for excluding layer 2 and layer 5. In layer 2,
the original source code is designed to skip some images for
speed-up, and the order of parameter access may not be con-
tinuous. Therefore, it was decided not to apply the PFBC for
layer 2. In the case of layer 5, the layer is excluded from the
application of the PFBC because it is a fully connected layer,
and applying the PFBC makes it impossible to apply loop fold-
ing and loop unrolling.

To compare the design with and without PFBCs, three de-
signs were implemented:

• with BRAM as a baseline and without PFBCs,
• with SDRAM and without PFBCs, and
• with SDRAM and with PFBCs.

We measured the execution time, circuit area, and BRAM us-

age. In order to investigate the effect of changing the number
of MIFs, the design of ZYBO with MIFs of 1, 2 and 4 was also
investigated. We used ZYBO Z7-20 (Xilinx, hereinafter called
ZYBO) and DE4 Education Board (Intel, hereinafter called
DE4).

In the baseline, the weights are defined as a two-dimensional
constant array, which is rewritten using MEM to create a de-
sign with BRAM. The design with SDRAM is the design with
the BRAM rewritten for SDRAM. Compared to the baseline,
this design has four lines or eight lines of changes and addi-
tions, but no difference in terms of the C description. In Fig.
5a, the MEM channel l0 coef is defined and associated with
MIF 1. The channel has 150 data block depth and 8-bits per
one data block placed on SDRAM. In Fig. 5b, the HW process
read weight by L0 COEF READ. The first argument is the in-
dex, and the second argument is the address of the variable to
be read.

Finally, the design with PFBCs is a modified design in
which the SDRAM is used to obtain the weights by PFBCs.
Compared to the original implementation, this implementation
has eight line changes and additions in the SDF and 20 line
changes in the C description. In Fig. 5c and Fig. 5d are the
PFBC definition described in Section IV.

VI. Discussion

We consider the results of the logic synthesis and execution
presented in Table V. In terms of latency, the design with PF-
BCs was the most successful in reducing the latency of mem-
ory accesses. The speeds of both DE4 and ZYBO were fac-
tors of 2–3 faster than that of the base case. When SDRAM
was used without a PFBC, the speeds of DE4 and ZYBO were
factors of approximately 1/4 and 1/10 that of the base case, re-

- 217 -

TABLE V

: Case study results

Target Com. I/F Latency (μs) Throughput (fps) BRAM usage (KB) Area (LEs, slice logics)

DE4 @50 MHz

BRAM (base) 24,065 249.3 211.6 14,202

SDRAM 103,754 57.8 166.5 13,969

PFBC (4 MIFs) 9,141 656.4 176.8 15,603

ZYBO @100 MHz

BRAM (base) 12,470 249.3 371.3 14,430

SDRAM 118,566 57.8 303.8 14,304

PFBC (4 MIFs) 4,787 1253.4 317.3 15,535

PFBC (2 MIFs) 4,845 1238.4 317.3 14,997

PFBC (1 MIF) 4,986 1203.4 317.3 14,742

Latency is the execution time for six images.

spectively. The reason for the difference between the boards
is the difference in the bus width: DE4 has bus access with a
width of 256 bits, while ZYBO has bus access with a width of
32 bits. These results suggest that the PFBC can reduce the
memory access latency compared to other implementations.

Next, we will discuss BRAM usage. BRAM is internal
memory and the baseline design requires a large capacity. The
design of the PFBC also uses more BRAM than the SDRAM
design; however, this is because FIFO is located in the BRAM,
which requires more BRAM than simply getting data from the
SDRAM.

Finally, the PFBC had the largest circuit area. The PFBC has
an interface for each layer. The scale of the circuitry is larger
than that of other designs because of the automatic reading of
data and other functions.

There was no difference in BRAM usage, as the number of
used MIFs increases, the circuit area increased. Therefore, we
can increase the number of PFBCs and reduce the increase in
latency from MIF contention, even if the number of MIFs is
insufficient for PFBCs.

These results show that PFBC design can reduce the amount
of BRAM used and is faster than other designs with mem-
ory accesses. As described in Section I, most of the FPGAs
currently available from FPGA vendors have a large circuit
area but low BRAM. The choice of low-end FPGAs becomes
impractical when considering high-speed implementation with
BRAM, and this can be a major problem for embedded sys-
tem development in which reduced costs is a goal. Therefore,
even if the circuit area is large, PFBCs are considered to be
useful because they reduce the BRAM usage and allow faster
implementation than using SDRAM.

VII. Summary and Conclusions

In this study, we proposed PFBC and using it as a method
to hide SDRAM access latency. The results show that PFBCs
can be used to infer DNNs faster by a factor of about 10 than
simple access to SDRAM.

One of the challenges for the future is to rethink the design
of the DNN layer operations themselves to gain more insight
into the effective use of PFBCs. To apply PFBCs to DNNs,
we believe that there are some cases in which PFBCs can be
more effective for designs where loop expansion or loop fold-
ing could not be applied in the past (e.g., by modifying the
order of layer operations).

References

[1] H. Nakahara, T. Fujii, and S. Sato, “A fully connected
layer elimination for a binarizec convolutional neural net-
work on an FPGA,” in FPL 2017. IEEE, 2017, pp. 1–4.

[2] A. Prost-Boucle, A. Bourge, F. Pétrot, H. Alemdar,
N. Caldwell, and V. Leroy, “Scalable high-performance
architecture for convolutional ternary neural networks on
FPGA,” FPL 2017, 2017.

[3] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Sri-
vastava, R. Gupta, and Z. Zhang, “Accelerating Bi-
narized Convolutional Neural Networks with Software-
Programmable FPGAs,” in FPGA 2017. ACM, 2017,
pp. 15–24.

[4] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimiz-
ing the Convolution Operation to Accelerate Deep Neural
Networks on FPGA,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, no. 99, pp. 1–14, 2018.

[5] F. Li and B. Liu, “Ternary Weight Networks,” arXiv
preprint arXiv:1605.04711, 2016.

[6] Y. Ando, Y. Ishida, S. Honda, H. Takada, and M. Edahiro,
“Automatic synthesis of inter-heterogeneous-processor
communication for programmable system-on-chip,” IPSJ
Transactions on System LSI Design Methodology, vol. 8,
pp. 95–99, Aug 2015.

[7] Y. Ando, S. Honda, H. Takada, and M. Edahiro, “System-
level design method for control systems with hardware-
implemented interrupt handler,” Journal of Information
Processing, vol. 23, no. 5, pp. 532–541, Sep 2015.

[8] S. Honda, H. Tomiyama, and H. Takada, “Systembuilder:
A system level design environment,” IEICE Trans. Infor-
mation & Systems, vol. 88, pp. 163–174, 2005.

[9] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient
processing of deep neural networks: A tutorial and sur-
vey,” Proceedings of the IEEE, vol. 105, no. 12, pp.
2295–2329, 2017.

[10] X. Wei, Y. Liang, and J. Cong, “Overcoming data
transfer bottlenecks in FPGA-based DNN accelerators
via layer conscious memory management,” in 2019
56th ACM/IEEE Design Automation Conference (DAC).
IEEE, 2019, pp. 1–6.

- 218 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

