
Study on an RTL Conversion Method from Pipelined Synchronous RTL
Models into Asynchronous RTL Models.

Shogo Semba Hiroshi Saito
The University of Aizu, Japan The University of Aizu, Japan

d8211108@u-aizu.ac.jp hiroshis@u-aizu.ac.jp

Abstract— In this paper, we propose a conversion
method from pipelined synchronous Register Trans-
fer Level (RTL) models into asynchronous RTL mod-
els with bundled-data implementation. The proposed
method generates a control data flow graph (CDFG)
from a given synchronous RTL model. After gener-
ating the CDFG, the proposed method generates an
asynchronous RTL model by analyzing each pipeline
stage on the CDFG, assigning asynchronous control
modules, and connecting the control modules. In the
experiment, we converted four pipelined synchronous
RTL models into asynchronous ones. In addition,
we performed logic synthesis for the converted asyn-
chronous RTL models. The synthesized asynchronous
circuits could reduce the energy consumption by 3.6%
on average.

I. Introduction

Most of the digital integrated circuits are synchronous
circuits in which circuit components are controlled by
global clock signals. Synchronous circuits face problems
when the semiconductor miniaturization technology is ad-
vanced more and more. One is synchronization failures
caused by clock skew. Another is the increase of the power
consumption due to the distribution of clock signals with
high frequency to wide area.
In asynchronous circuits, circuit components are con-

trolled by local handshake signals or self-timings instead
of global clock signals. Therefore, asynchronous circuits
are potentially low power consumption compared to syn-
chronous circuits. However, the design of asynchronous
circuits is more difficult than the design of synchronous
circuits because design methods and design constraints
are different according to the selection of data encoding,
handshake protocol, and delay model.
To facilitate the design of asynchronous circuits, conver-

sion methods from synchronous Gate-Level (GL) netlists
into asynchronous ones were proposed in [1–6]. However,
logic optimization considering the characteristics of asyn-
chronous circuits cannot be performed in the GL con-
version methods, because logic synthesis is performed for
synchronous Register Transfer Level (RTL) models with
a clock constraint.
We proposed a conversion method from synchronous

RTL models into asynchronous ones [7]. Compared to
the GL conversion methods, the RTL conversion method
can optimize asynchronous circuits by assigning con-
straints considering the characteristics of asynchronous

circuits during logic synthesis. However, the RTL con-
version method cannot deal with pipelined synchronous
RTL models. In many applications, pipelined circuits are
adopted to increase the performance. Hence, by convert-
ing pipelined synchronous RTL models into asynchronous
ones, we design low power circuits more than synchronous
circuits.
In this paper, we propose a conversion method from

pipelined synchronous RTL models into asynchronous
RTL models. The proposed method is an extension of [7].
The proposed method generates a control data flow graph
(CDFG) from a synchronous RTL model. After gen-
erating the CDFG, the proposed method assigns asyn-
chronous control modules by analyzing each pipeline stage
in the CDFG. Then, the proposed method generates an
asynchronous RTL model by connecting the control mod-
ules to the data-path resources.
The proposed method generates CDFGs from pipelined

synchronous RTL models before conversion which is not
generated in [7]. In [7], asynchronous control modules are
assigned directly by referring to the states of the finite
state machine (FSM) in non-pipelined synchronous RTL
models. However, it is difficult to assign asynchronous
control modules directly for pipelined synchronous RTL
models because they do not have an FSM or the number
of states in the FSM is not equal to the number of pipeline
stages. Therefore, the proposed method generates CDFGs
to assign asynchronous control modules.
The rest of this paper is organized as follows. Section

2 describes asynchronous circuits with bundled-data im-
plementation used in this work. Section 3 describes the
overview of the RTL conversion method proposed in [7].
Section 4 describes the proposed RTL conversion method
for pipelined synchronous RTL models. Section 5 de-
scribes the experimental results. Finally, section 6 de-
scribes the conclusion and future work.

II. Asynchronous Circuits with Bundled-data

Implementation

Bundled-data implementation is one of the data encod-
ing schemes in asynchronous circuits. In the bundled-data
implementation, one-bit data is represented by one signal.
The timing to write data to registers is guaranteed by de-
lay elements on request signals req in a control circuit.
Hence, the performance of the bundled-data implementa-
tion depends on the delay of the control circuit including
the delay elements.
Figure 1 shows the circuit model of asynchronous cir-

cuits with bundled-data implementation used in this

SASIMI 2021 ProceedingsR4-9

- 229 -

Fig. 1. Asynchronous circuits with bundled-data implementation.

work. This circuit model consists of a data-path circuit
and a control circuit.
The data-path circuit is almost the same as the one

used in synchronous circuits. It consists of registers regk,
multiplexers muxl, and functional units fuh.
The control circuit consists of control modules ctrli

(0≤i≤n − 1) assigned for each pipeline stage stagei.
glueregk and gluemuxl

are logics to control regk andmuxl.
ctrli is an extended Click element [8]. It consists of a D

flip-flop DFFi, two XOR gates, and a delay element sdi.
If there are control branches, a D flip-flop bDFFi and an
AND gate are inserted before sdi. In ctrli, the acknowl-
edgment signal used in traditional asynchronous circuits
is not used. Only the request signal is used for succeeding
control modules. Hence, each ctrli is operated by a self-
timing using sdi which guarantees setup constraints for
regk. ctrli is operated by the rising transition and falling
transition of reqi. Data are written to registers by the
rising transition of lclki.
The control circuit starts its operation when a rising

transition of the input signal start arrives at the control
circuit. ctrli starts its operation when a rising transition
of outi−1 or lclki−1 from ctrli−1 arrives at ctrli. The sig-
nal transition generates a rising transition of reqi. Then,
reqi generates a rising transition of sti through one of the
XOR gates. sti controls muxl through gluemuxl

. reqi
also generates a rising transition of lclki through sdi and
the other XOR gate. lclki controls regk through glueregk
and DFFi. DFFi generates a rising transition of outi to
pass the control to ctrli+1. Finally, ctrli generates falling
transitions of lclki and sti by using outi. Note that the
behavior of ctrli in the case of the falling transition of reqi
is the same as the case of the rising transition of reqi.

III. RTL Conversion

The RTL conversion method in [7] generates asyn-
chronous RTL models from synchronous RTL models de-
scribed by Verilog Hardware Description Language (HDL)
through Sync2XML and XML2Async. The RTL conver-
sion method takes a parameter file called Info-eXtensible
Markup Language (XML) as another input. The Info-
XML consists of a top-level module name, a global clock

Fig. 2. RTL conversion method in [7]: (a) Info-XML and
synchronous RTL model, (b) RTL conversion flow, (c) AST and
control flow, and (d) Model-XML.

signal name, and so on. Figure 2(a) shows a part of the
Info-XML and the structure of a synchronous RTL model.
Figure 2(b) shows the RTL conversion flow in [7].
Sync2XML generates the abstract syntax tree (AST)

and the control flow from given synchronous RTL models
through Pyverilog [9]. Figure 2(c) shows a part of the
AST and the control flow for the synchronous RTL model
in Fig.2(a). The AST represents the structure of RTL
models while the control flow represents state transitions.
After generating the AST and control flow, Sync2XML

generates an intermediate representation called Model-
XML from the AST and control flow. The Model-XML
consists of data-path resource information, path informa-
tion including data-paths and control-paths, and timing
information including register write signals and multi-
plexer control signals as shown in Fig.2(d).
After generating the Model-XML, XML2Async gener-

ates an asynchronous RTL model with bundled-data im-
plementation from the Model-XML. XML2Async assigns
data-path resources and connects the data-path resources
from the resource and path information. XML2Async also
assigns control modules and connects the control modules
from the path information. Finally, to connect the control
modules to the data-path resources, XML2Async gener-
ates register write signals and multiplexer control signals
from the timing information.

IV. Proposed Method

We extend the RTL conversion method described in
Sec.III. Figure 3 shows the extended RTL conversion flow.

- 230 -

Fig. 3. Extended RTL conversion flow.

The bold types represent extensions. The extensions are a
generation of a CDFG and an analysis of pipeline stages in
Sync2XML. The other extensions are assigning and con-
necting control modules and a generation of register write
signals and multiplexer control signals in XML2Async.

A. Target Pipelined Synchronous RTL Models

There are restrictions of pipelined synchronous RTL
models. The data-path circuit must be composed of regis-
ters, functional units, and multiplexers as shown in Fig.1.
The synchronous RTL models are assumed to have only
one control circuit. The input interval for the synchronous
RTL models is only one cycle. The proposed method
does not care whether forwarding operation is included
or not. Syntax such as ”function”, ”task”, ”for”, ”while”,
”wait”, and ”[sub,5’h0+:32] (concatenation)” must not be
included in Verilog HDL. To deal with the syntax is our
future work.
Figure 4 shows examples of pipelined synchronous RTL

models. The structure of RTL models may be changed by
depending on whether the RTL models include pipeline
stalls or not. Figures 4(a) and (b) show RTL models with-
out pipeline stalls and with pipeline stalls. If pipeline
stalls are included in synchronous RTL models, pipeline
stages stall the operation during the stall. Note that
creg0, creg1, and creg2 represent registers in the control
circuit.

B. Extension of Sync2XML

In asynchronous circuits, data-path resources in each
stagei are controlled by each ctrli. To know the data-path
resources controlled by each stagei, Sync2XML generates
a CDFG from the AST generated by Pyverilog. After
generating the CDFG, Sync2XML analyzes each stagei in
the CDFG. Then, Sync2XML extracts the pipeline stage
information and timing information, and generates them
into the Model-XML.

B.1. Generation of a CDFG

The CDFG used in this work represents the control flow
and data flow in synchronous RTL models. The CDFG
is a combination of the control flow graph and data flow
graph. The CDFG consists of nodes, edges, and stagei
as shown in Fig.5. The nodes represent resources such

Fig. 4. Pipelined synchronous RTL models: (a) without pipeline
stalls and (b) with pipeline stalls.

as registers and functional units in the data-path circuit
and registers and basic logic operations in the control cir-
cuit. The nodes except functional units and basic logic
operations have a control signal name (the left side of the
nodes in Fig.5) and its value (the upper side of the nodes
in Fig.5). The edges represent a connection between re-
sources. Between registers represents stagei. stagei has
a conditional signal cond and its value val to start the
operation in stagei.
Sync2XML generates nodes from ”Lvalue” or ”In-

stance” in the AST and edges from ”Rvalue” or ”Por-
tArg” in the AST. Sync2XML also extracts the label for
the nodes from the variable name and the control signal
with its value for the nodes from ”IfStatement” or ”Cas-
eStatement” in the AST which represents branches.
Sync2XML regards between registers as stagei. Then,

Sync2XML extracts cond and val for stagei from
”Rvalue”, ”IfStatement”, and ”CaseStatement” for the
control circuit in the AST. Sync2XML also labels the gen-
erated pipeline stages in the order from stage0.
On the other hand, the extraction method for cond and

val for stagei is different depending on whether there
are stall signals or not. When there is no stall signal,
Sync2XML extracts cond and val from the AST. When
there are stall signals, the extraction method is different
depending on whether there are multiple stall signals or
one stall signal. Sync2XML does not extracts cond and
val if there is one stall signal, because the operations of
ctrli and ctrli−1 cannot be resumed by one stall signal at
the same time. In contrast, Sync2XML extracts cond and
val from the AST if there are multiple stall signals.
Figure 5 shows the generated CDFG for Fig.4(a). For

example of node generations, the node of reg1 is generated
from ”Lvalue” for reg1 in the AST. The control signal en1

is given to the node from ”IfStatement”. For example of
edge generations, the edge frommux0 to reg1 is generated
from ”Rvalue” for reg1 in the AST. For example of stagei
generations, we regard between reg0 and reg1 through
add0 as stage1. The conditional signal bn and its value 1
are given to stage1 from ”Rvalue” for creg0 in the AST.

B.2. Analysis of pipeline stages

For the generated CDFG, Sync2XML analyzes pre-
ceding and succeeding pipeline stages for each stagei.

- 231 -

Fig. 5. CDFG for the synchronous RTL model in Fig.4(a).

Sync2XML also analyzes register write signals and mul-
tiplexer control signals. After analyzing the CDFG,
Sync2XML generates pipeline stage information and tim-
ing information into the Model-XML.
Sync2XML analyzes preceding and succeeding pipeline

stages for each stagei. In the CDFG, stagej (j �= i) is
a succeeding pipeline stage for stagei when resources of
stagei are connected to resources of stagej . In contrast,
stagej is a preceding pipeline stage for stagei when re-
sources of stagej are connected to resources of stagei.
Sync2XML also extracts a conditional signal and its value
for the transition between pipeline stages from cond and
val of stagej .
Sync2XML analyzes values of register write signals and

multiplexer control signals. If there is regk in stagei on
the CDFG, the value of the register write signal for regk
is 1 for stagei. If there is muxl in stagei on the CDFG,
the value of the multiplexer control signal for muxl is the
control value held by muxl for stagei.
After analyzing stagei, Sync2XML generates pipeline

stage information and timing information into the Model-
XML. In the pipeline stage information, Sync2XML gen-
erates the pipeline stage information for each stagei using
〈ctrl〉. Sync2XML also generates preceding pipeline stage
information 〈pred〉 and succeeding pipeline stage informa-
tion 〈succ〉 into 〈ctrl〉. If there is no preceding pipeline
stage, Sync2XML assigns the external input signal start
to 〈pred〉. Moreover, Sync2XML assigns a conditional sig-
nal ctrlname and its value ctrlval to operate preceding
or succeeding pipeline stages to 〈pred〉 or 〈succ〉. On the
other hand, in the timing information, Sync2XML gen-
erates the register write signal information or the multi-
plexer control signal information for each control signal of
registers and multiplexers using 〈mux〉 or 〈reg〉. Finally,
Sync2XML assigns the control values to 〈reg〉 and 〈mux〉
from the analyzed values of the control signals.
Figure 6 shows the generated Model-XML from the

CDFG in Fig.5. In the pipeline stage information,
Sync2XML generates four 〈ctrl〉. For 〈ctrl〉 correspond-
ing to stege1, Sync2XML assigns stege0 to 〈pred〉, bn to
ctrlname, and 1 to ctrlval because the preceding pipeline
stage for stege1 is stege0. Sync2XML also assigns stege3
to 〈succ〉 because the succeeding pipeline stage for stege1

Fig. 6. Model-XML generated from CDFG in Fig.5: (a) pipeline
stage information and (b) timing information.

is stege3. In the timing information, Sync2XML assigns
the register write signal en1 whose values of stage1 and
stage2 are 1 to 〈reg〉 because there is reg1 in stage1 and
stage2 on the CDFG.

C. Extension of XML2Async

XML2Async generates pipelined asynchronous RTL
models from the Model-XML by assigning control mod-
ules, connecting the control modules, and generating con-
trol signals. All resources are represented by Verilog HDL.

C.1. Assigning and connecting control modules

XML2Async assigns ctrli for each 〈ctrl〉 in the Model-
XML. XML2Async also connects ctrli by referring to
〈pred〉 and 〈succ〉 in 〈ctrl〉.
ctrli in Fig.7(a) represents assigned ctrli by referring to

〈ctrl〉 in Fig.6(a). XML2Async assigns four ctrli for four
〈ctrl〉. For ctrl1, XML2Async connects ctrl0 to ctrl1 by
referring to 〈pred〉 in 〈ctrl〉. XML2Async also connects
ctrl1 to ctrl3 by referring to 〈succ〉 in 〈ctrl〉. XML2Async
connects all control modules in the same way.

C.2. Generation of control signals

XML2Async generates register write signals and multi-
plexer control signals by referring to 〈reg〉 and 〈mux〉 in
the Model-XML. The assignment of register write signals
consists of the logical OR of lclki where stagei in 〈reg〉 is
equal to 1. Similarly, the assignment of multiplexer con-
trol signals consists of the logical OR of sti where stagei
in 〈mux〉 is equal to 1.
The control signals in Fig.7(a) represent generated con-

trol signals by referring to 〈reg〉 and 〈mux〉 in Fig.6(b).
For example of the generation of the register write signal
en1 for reg1, the assignment of en1 consists of the logical
OR of lclk1 and lclk2 because the values of stage1 and
stage2 in 〈reg〉 are 1. Figure 7 shows converted asyn-
chronous RTL models from the synchronous RTL models
in Fig.4.

- 232 -

TABLE I
RTL conversion results.

Name Stall CT [ps] Stage Sverilog [lines] AST [lines] Model-XML [lines] Averilog [lines] T ime [s]

DIFFEQ None 1,200 4 164 765 110 359 1.9
Hard 1,200 4 209 859 188 437 2.1
Soft 1,200 4 208 922 177 457 2.0

EWF None 1,200 9 668 3,202 429 1,345 2.5
Hard 1,200 9 859 3,588 746 1,624 2.8
Soft 1,200 9 825 3,703 715 1,674 2.7

MLP None 400 20 16,925 94,130 22,276 36,668 283.1
Hard 400 20 20,734 101,164 28,039 40,497 341.9
Soft 400 20 18,863 99,661 27,974 40,613 338.1

AES None 600 41 130,036 94,6154 192,782 138,675 2992.3
Hard 600 41 133,499 95,5070 198,594 142,578 3130.8
Soft 600 41 132,152 95,4490 198,474 142,820 3172.3

Fig. 7. Pipelined asynchronous RTL models: (a) for Fig.4(a) and
(b) for Fig.4(b).

V. Experimental Results

In the experiment, we converted four pipelined syn-
chronous RTL models into asynchronous RTL models us-
ing the proposed method. For the experiment, we im-
plemented the proposed method using Java. The imple-
mented tool was performed on a Windows 10 machine
(Intel Core i7-8700 3.2GHz CPU and 16GB memory).
For the experiment, we prepared four synchronous RTL

models synthesized by high-level synthesis (HLS) from
SystemC models using Cadence Stratus HLS 18.1. The
prepared synchronous RTL models are a differential equa-
tion solver (DIFFEQ), an elliptic wave filter (EWF),
a multilayer perceptron (MLP) [10] whose the number
of neuron is 32, and the advanced encryption standard
(AES) [11]. In addition, we prepared synchronous RTL
models with a hard stall (Hard) and a soft stall (Soft) by
applying directives [12] in Stratus HLS. Hard means that
the operations of all pipeline stages stall while Soft means
that the operations of specified pipeline stages stall. We
also applied clock gating option to HLS for synchronous
RTL models. The library was eShuttle 65nm process tech-
nology.
Table I shows the conversion results using the proposed

method. Stall, CT , Stage, and Sverilog represent the
type of stalls, the clock cycle time, the number of pipeline
stages, and the number of lines in Verilog HDL of syn-
chronous RTL models. AST , Model-XML, Averilog,
and Time represent the number of lines in the AST, the

number of lines in the Model-XML, the number of lines in
Verilog HDL of asynchronous RTL models, and the con-
version time. Note that the clock cycle time of the syn-
chronous RTL models represents the shortest one without
timing violations during HLS.
From Table I, the conversion time depends on the num-

ber of pipeline stages and the number of lines in the AST.
Compared to the conversion time for the RTL models
without stalls, the conversion time for the RTL models
with stalls was increased because the number of lines in
the AST with stalls is more than the number of lines in
the AST without stalls.
To verify the functional correctness of the converted

asynchronous RTL models, we performed logic simulation
using Synopsys VCS Q-2020.03-SP1. To perform the sim-
ulation, we prepared a test bench with 100 arbitrary test
patterns. For the simulation, we generated a Standard
Delay Format file by synthesizing the asynchronous RTL
models using Cadence Genus 18.1. After the simulation,
we confirmed that all output values of the asynchronous
RTL models were the same as the output values of the
synchronous RTL models.
To check the quality of the converted asynchronous

RTL models (async), we performed logic synthesis based
on the design flow in [13]. To obtain the same perfor-
mance as the synchronous circuits (sync), we generated
the maximum delay constraints for the control-paths and
the local clock constraints for each pipeline stage in the
asynchronous RTL models from the clock cycle time of
the synchronous circuits. The clock cycle time of the syn-
chronous circuits for DIFFEQ, EWF, MLP, and AES were
1, 400 ps, 1, 500 ps, 600 ps, and 900 ps, respectively. The
clock cycle time of the synchronous RTL models repre-
sents the shortest one without timing violations during
logic synthesis.
Figure 8(a) shows the circuit area obtained by Genus.

The circuit area of async was reduced by 0.9% on average.
This is because the structure of the data-path circuit was
changed by assigning the constraints which are different
from the constraints of the synchronous circuit. However,
the area of the control circuit of async was increased by
inserting the control modules. Whether there are stalls or
not did not have a significant impact on the circuit area.
Figure 8(b) shows the execution time obtained by logic

simulation. In Hard and Soft, 20 cycles were stalled. The
execution time of async was increased by 2.0% on aver-
age. This is because the cycle time of async was slightly

- 233 -

Fig. 8. Evaluation results: (a) circuit area, (b) execution time, (c)
dynamic power consumption, and (d) energy consumption.

slower than the cycle time of sync due to the insertion
of the delay element in which the delay was longer than
the critical path delays of the data-paths. Whether there
are stalls or not did not have a significant impact on the
execution time.
Figure 8(c) shows the dynamic power consumption ob-

tained by Synopsys PrimeTime Q-2019.12-SP3 with the
Value Change Dump file generated by VCS. async with-
out stalls could reduce the dynamic power consumption
by 3.9% on average. This is because the dynamic power
consumption of the clock networks was reduced due to the
use of the asynchronous control modules instead of the
global clock signals. Moreover, the dynamic power con-
sumption of the registers and combinational circuits was
reduced because the only required circuit components are
operated in asynchronous circuits. Also, async with stalls
could reduce the dynamic power consumption by 6.1% on
average because the dynamic power consumption of logics
for stalls in async was reduced.
Figure 8(d) shows the energy consumption obtained by

multiplying the execution time and the dynamic power
consumption. async could reduce the energy consump-
tion by 3.6% on average because the reduction effect of
the dynamic power consumption was higher than the in-
crease of the execution time.

VI. Conclusion

In this paper, we proposed a conversion method from
pipelined synchronous RTL models into asynchronous
RTL models with bundled-data implementation. In the
experiment, we converted four pipelined synchronous
RTL models into asynchronous ones. Compared to
synchronous circuits, the energy consumption of asyn-
chronous circuits using the proposed method was reduced
by 3.6% on average.
As our future work, we extend the proposed method to

deal with pipelined synchronous RTL models including
multiple control circuits. In addition, we are going to
propose low energy optimization methods during the RTL
conversion for pipelined asynchronous circuits.

Acknowledgements

This work is partially supported by Grant-in-Aid for
Scientific Research from Japan Society for the promotion
of science (#18K11221 and #20J11724).

References

[1] J. Cortadella et al., ”Desynchronization: Synthesis of Asyn-
chronous Circuits From Synchronous Specifications”, IEEE
TCAD, vol. 25, pp. 1904–1921, 2006.

[2] N. Andrikos et al., ”A Fully-Automated Desynchronization
Flow for Synchronous Circuits”, Proc. DAC, pp. 982–985,
2007.

[3] A. Kondratyev and K. Lwin, ”Design of Asynchronous Circuits
by Synchronous CAD Tools”, Proc. DAC, pp.411–414, 2002.

[4] R. Zhou et al., ”Quasi-Delay-Insensitive Compiler: Automatic
Synthesis of Asynchronous Circuits from Verilog Specifica-
tions”, Proc. NWSCAS, pp. 1–4, 2011.

[5] A. Branover et al., ”Asynchronous Design By Conversion:
Converting Synchronous Circuits into Asynchronous Ones”,
Proc. DATE, pp. 870–875, 2004.

[6] R. B. Reese et al., ”Uncle - An RTL Approach to Asyn-
chronous Design”, Proc. ASYNC, pp. 65–72, 2012.

[7] S. Semba and H. Saito, ”Conversion from Synchronous RTL
Models to Asynchronous RTL Models”, IEICE TRANSAC-
TIONS on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E102-A, No. 7, pp. 904–913, 2019.

[8] Ad Peeters et al., ”Click Elements: An Implementation Style
for Data-Driven Compilation”, Proc. ASYNC, pp. 3–14, 2010.

[9] S. Takamaeda-Yamazaki, ”Pyverilog: A Python-based Hard-
ware Design Processing Toolkit for Verilog HDL”, Proc. ARC,
Lecture Notes in Computer Science, Vol.9040/2015, pp.451–
460, 2015.

[10] Y. Umuroglu et al., ”FINN: A Framework for Fast, Scalable
Binarizrd Neural Network Inference”, Proc. ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays, pp. 65–74, 2017.

[11] Yuko Hara et al., ”Proposal and Quantitative Analysis of
the CHStone Benchmark Program Suite for Practical C-based
High-level Synthesis”, Journal of Information Processing, vol.
17, pp. 242–254, 2009.

[12] Cadence, ”Stratus High-Level Synthesis User Guide”, product
version 18.1, 2018.

[13] S. Semba and H. Saito, ”Comparison of RTL Conversion and
GL Conversion from Synchronous Circuits to Asynchronous
Circuits”, Proc. ISCAS, pp. 1–4, 2019.

- 234 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

