
A Feasibility Study on Realizing General-purpose Technology Mapper
for DSPs of FPGAs Using Exhaustive Search

Koyo Shibata†1 Takashi Imagawa†2 Hiroyuki Ochi†1,2

†1 Graduate School of Information Science and Engineering, Ritsumeikan University
†2 College of Information Science and Engineering, Ritsumeikan University

1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577 Japan
is0358ir@ed.ritsumei.ac.jp, takac-i@fc.ritsumei.ac.jp, ochi@cs.ritsumei.ac.jp

Abstract— This paper proposes a technology map-
ping algorithm applicable for arbitrary single-output
tree-structure DSP block whose operation nodes have
up to two fan-ins of FPGAs, based on an exhaustive
search to find an optimal implementation of the given
application circuit description. DSP blocks consisting
of hard macro multipliers, etc. have become essen-
tial in FPGAs to achieve high performance and area
efficiency. For the effective use of DSP blocks, a tech-
nology mapping algorithm is indispensable to find the
optimal implementation of a given circuit using DSP
blocks. Ronak et al. have proposed a greedy algorithm
to search for a mapping that maximizes throughput,
targeting the Xilinx DSP48E1. Our proposed algo-
rithm applies to a broader range of DSP blocks since
it automatically generates a database of valid config-
urations from a structural description of the target
DSP block. Replication of the operators allows us
to find solutions with a smaller number of DSP blocks
than those by the conventional algorithm while reduc-
ing global nets. To reduce runtime, we also introduce
pruning techniques and graph partitioning that do not
affect the optimality. From experiments using DFGs
with 33, 58, and 100 nodes, the proposed method re-
duces the number of DSP blocks by 7.94–10.81% com-
pared with the conventional algorithms.

I. Introduction

Digital signal processing (DSP), which is one of the
main target applications of FPGAs, requires a lot of arith-
metic operations such as multiply-and-accumulate opera-
tion. The LUT-based implementation of arithmetic oper-
ation degrades the area, power consumption, and perfor-
mance of application circuits because it requires a large
number of logic blocks and their interconnections. On
the other hand, the arithmetic operations can be imple-
mented efficiently by using the DSP block integrated into
FPGAs [1].

Since a DSP block consists of multiple arithmetic units
such as multipliers and adders, it is necessary to assign

as many operations as possible to one DSP block in order
to further improve the implementation efficiency of arith-
metic operations. The assignment is called as mapping
and the algorithm which explores an appropriate set of
assignments is called as technology mapping in this paper.
Ronak et al. [2] have proposed a greedy algorithm to ex-
plore for a mapping that maximizes throughput, and the
target DSP block is Xilinx DSP48E1.

The technology mapping proposed in this paper ex-
haustively explores a mapping that minimizes the num-
ber of DSP blocks and that of interconnection between the
blocks. Note that, in the proposed algorithm, a target ap-
plication circuit is represented as a data flow graph (DFG)
whose node is arithmetic operation. The algorithm repli-
cates nodes to reduce the number of DSP blocks. This
replication is inspired by the replication of logic gates with
multiple fanouts in technology mapping for LUT. On the
other hand, an exhaustive search takes a very long time,
so for mappings that are clearly inefficient, the search is
terminated without losing the exhaustiveness. Different
from the conventional method, the target DSP architec-
ture of the proposed algorithm is not limited to those of
specific models and vendors.

The remainder of the paper is organized as follows. In
section 2, we describe the DSP blocks and conventional
mapping methods. In section 3, we describe the proposed
mapping method, and in section 4, we show experimental
results using application circuits to compare the conven-
tional and proposed methods. Finally, section 5 conclu-
sion and future works are described.

II. Background

A. DSP block

A DSP block is a hardware block in an FPGA. It con-
sists mainly of dedicated circuits for arithmetic operations
to improve performance and energy efficiency, with a cer-
tain level of programmability to enhance applicability to
various complex operations[1]. Since multiply-add opera-
tions frequently appear in the signal processing domain, a

SASIMI 2021 ProceedingsR1-12

- 61 -

Fig. 1. Xilinx’s DSP48E1 architecture[3]

Fig. 2. Generation of template database

DSP block typically consists of multiplier(s) and adder(s)
so that a single DSP block can implement a multiply-add
operation. The architectures of DSP blocks can vary due
to the difference in each FPGA vendor’s design concept
and the difference in the target application domain. Fig. 1
shows the block diagram of Xilinx’s DSP block DSP48E1.
It consists of a pre-adder, a multiplier, and an accumula-
tor, which are essential to implement a multiply-add op-
eration in a single DSP block. Additionally, it has many
registers, and so on. Note that the search algorithm pro-
posed in this paper does not consider the registers inside
the DSP block.

B. Conventional technology mapping algorithms for
DSP blocks

Ronak et al. proposed technology mapping algorithms
that generate a Verilog-HDL netlist of DSP blocks from
a given arithmetic assignment statement list.

First, a template database is generated in preparation
for mapping. The DSP48E1 targeted in [2] is modeled
as three arithmetic units connected in series, as shown in
Fig. 2 (A). There are seven possible valid configurations
for it since there are seven possible ways to choose arith-
metic units to enable; these are manually stored in the
template database. Mapping is performed based on this
database, and two types of algorithms, Greedy Segmen-
tation and Improved Segmentation, have been proposed.

The flow of Greedy segmentation is as follows.

Fig. 3. Overall Flow of Proposed Mapping Method

1. Select an unchecked node n randomly in the DFG.

2. Find a fanout-free subgraph of up-to-three consecu-
tive unchecked nodes starting from n that matches a
template in the database and mark them as checked.

3. Repeat above until all nodes in the DFG are checked.

While the time complexity of the algorithm is linear to
the DFG size, the DSP count depends on node n in Step
1. To cope with the above problem, they also proposed
an improved algorithm, in which matchings to three nodes
are searched first, followed by matchings to two nodes and
one node are searched.

Since the above algorithm is specialized to DSP48E1,
it is not applicable to other FPGAs containing DSPs of
different architecture.

Furthermore, the above algorithm searches for only
fanout-free subgraphs to match the template, failing to
find an optimal solution. In the technology mapping for
LUTs, it has been proven that replicating multiple-fanout
gates enables us to find better solutions. Inspired by the
LUT mapping, we will develop a new mapping algorithm
for DSP blocks in which multiple-fanout arithmetic oper-
ations are replicated similarly.

III. Proposed Method

A. Overall Flow of Proposed Mapping Method

The overall flow of the proposed mapping method is
shown in Fig. 3. It uses a description of the target DSP
block and the application circuit to be mapped as input.
Using the former, subgraphs of the DSP block are auto-
matically extracted and stored in the template database.
The subgraph of a DSP block is a graph consisting of all
or some of the arithmetic operations that make up a DSP
block and corresponds to the arithmetic functions that
can be realized in a single DSP block by configuration. By
parsing the latter, the corresponding DFG is generated.
Using the DFG and the template database, it performs
technology mapping to search for optimal mapping based
on an exhaustive search.

In the following, we will focus on our technology map-
ping algorithm.

- 62 -

(a) A given DFG (b) Impermissible
mapping

(c) Mapping without
replicating nodes (DSP:3,
nodes:3)

(d) Mapping to replicate
nodes (DSP:2, nodes:4)

Fig. 4. Node Replication

(a) In the case of re-
dundant node replication
(DSP:3, nodes:6)

(b) In the case of no
node replication (DSP:3,
nodes:6)

Fig. 5. Redundant node replication

B. Node Replication

The proposed mapping algorithm targets an FPGA ar-
chitecture with a single type of DSP block from which no
intermediate output can be extracted. It is assumed to
map to a netlist consisting of DSP blocks only. For ex-
ample, given a DFG, as shown in Fig. 4(a), the mapping,
as shown in Fig. 4(b), is not allowed. The conventional
methods demand three DSP blocks for mapping, as shown
in Fig. 4(c), where every multiple-fanout node should be
an output of a DSP block. The proposed method uses
node replication to reduce the number of DSP blocks to
achieve efficient mapping. The proposed method can map
the DFG with two DSP blocks by replicating node 1 as
shown in Fig.4(d) at the cost of increased arithmetic op-
erations.

We must note that node replication is not always the
best choice. Although both (a) and (b) in Fig. 5 require
three DSP blocks, Fig. 5(a) requires two more total op-
erations than (b), suggesting that such replication is re-
dundant.

C. Mapping algorithm

The proposed technology mapping algorithm traverses
the DFG from the output nodes to the input nodes in

01 // TDB : Template Database
02 // DFG : Data Flow Graph
03 mapper_main() {
04 T = All end nodes of the DFG;
05 dfs(T , φ); // Output optimal solution
06 }
07 dfs(T , M) {
08 if (T == φ) return φ;
09 t = pop(T);
10 S = A set of subgraphs containing t ∩ TDB;
11 for (i=0; i < |S|; i++) {
12 Mnew = Nodes mapped by Si;
13 Tnew = Parent nodes of Mnew uncontained in (Mnew ∪ M);
14 Ri = dfs(Tnew ∪ T , Mnew ∪ M)×{Si};
15 }
16 return ∪|S|

i=0Ri;
17 }

Fig. 6. Overview of the proposed algorithm

a depth-first manner, and for each node, considers each
subgraph corresponding to the DSP that covers the node.
Since multiple candidate subgraphs cover a node, we use
a depth-first search to explore the solution space exhaus-
tively to find the optimal solution. An overview of the
proposed algorithm is shown in Fig. 6.

First, the main routine mapper_main() creates a list of
target nodes that will be the starting point of the mapping
(hereafter the target list) T and calls the search function
dfs(). It takes two arguments, T and M . These values
for the first call are all the output nodes of the DFG and
a null set φ, respectively. The recursive function dfs()
picks out one node t from T and extracts a subgraph
ending with t. Let the maximum number of nodes in
the subgraph be the number of nodes in the DSP block,
extract all valid subgraphs, and leave those that match the
template database (TDB) as candidate subgraphs S that
cover t. Let the set of candidate subgraph S be the set of
subgraphs in the DFG that cover t and that match TDB.
The number of subgraphs |S| is the number of branches
in the search.

In practice, we set a restriction on the extraction of
subgraphs containing t. We exclude subgraphs contain-
ing a node that has been mapped as the output node
of a DSP. For example, consider extracting a subgraph
from the DFG in Fig.7(1) with a target node D. Since
the output of node B has been obtained, there is no need
to consider node B and its ancestors. Thus, if the target
node is D, the extracted subgraph is node D itself only.

We also exclude the mapped nodes whose parents are
also mapped. For example, consider extracting a sub-
graph from the DFG in Fig.7(2) with a target node D.
Since the input of node B has been obtained, it falls un-
der the above restriction of subgraph extraction. Hence,
if the target node is D, the subgraph to be extracted is a
subgraph up to node B, where the input is obtained.

To increase pruning effectiveness, which will be de-

- 63 -

Fig. 7. Subgraph extraction

scribed later, we preferentially map from subgraphs with
a high number of nodes. At the branch where subgraph
Si is selected from S, we remove t from the first argument
T and, instead, add unmapped parents of the nodes cov-
ered by Si, and add the nodes covered by Si to the second
argument M , then call dfs() recursively.

The completion of mapping is determined whether the
target list is empty. Then, backtracking is performed as
appropriate. When the search returns to the main rou-
tine, the exhaustive search is complete.

D. Pruning Techniques

Since the number of possible mapping is enormous and
the time required for an exhaustive search is extremely
long, an exhaustive search of all subgraphs is not real-
istic. Therefore, it is necessary to prune the subgraphs
without compromising their optimality. We introduce the
following pruning in the proposed algorithm.

1. Pruning redundant node replication

2. Pruning with the minimum number of DSPs needed
to map the remaining nodes

3. Pruning inefficient mapping

Pruning in this paper implies ignoring the recurrence
calls of the dfs() (line 14 in Fig.6).

D.1. Pruning redundant node replication

We prune the subgraphs that necessitate redundant node
replication, as demonstrated in Fig. 5. For example, as-
sume that node A and B in Fig. 8(1) are mappable to a
single DSP block, and node A and C are not (e.g., A and
C are multipliers, while the target DSP block has only
one multiplier). In this case, the replication of node A is
necessary to generate input to node C. Since such replica-
tion is redundant, we prune a subgraph containing a node
like A unless it is the subgraph’s output.

Consider another example in Fig. 8(2), where Node A
and B have already been mapped to a DSP block, and
thus node C should be mapped to a DSP block together

Fig. 8. Pruning redundant node replication

with replicated node A. This implies that a subgraph that
contains node C and not node A should be pruned. In
other words, when the target node is D, only two sub-
graphs, ACD and D, should be considered.

Fig.8(3) shows another example where nodes A and B
have been mapped, and node C must be mapped with the
same DSP block as replicated node A. This implies that
we cannot map nodes C and D together. This also implies
that node C requires node D’s output. This further im-
plies that we cannot map nodes E and D together. Thus,
we can prune subgraphs that violate the above restriction.

These techniques enable us to prune the subgraphs in
the search tree’s shallow level, and thus efficient search is
expected.

D.2. Pruning with the minimum number of
DSPs needed to map the remaining nodes

We calculate the minimum number of DSP blocks re-
quired to map the remaining unmapped nodes and prune
when the sum of it and those already mapped exceeds
those in the optimal solution at that time.

The proposed method calculates the nodes, considering
the types of operators. For each type of operator, we
divide the number of remaining nodes in the DFG by
the number of nodes of the corresponding type in a DSP
block. The maximum value among all types gives the
lower bound of DSP blocks needed. Pruning is performed
based on this value.

D.3. Pruning inefficient mapping

We leave only subgraphs that cover as many nodes as
possible without compromising optimality. First, we find
a subgraph, say s, that covers as many nodes as possible.
If s satisfies the conditions described below, we can safely
prune the subgraphs that are included by s without losing
chance to find better solutions.

The conditions for s to allow it to prune other sub-
graphs that are included by s without loss of optimality
are as follows.

1. A subgraph whose parent of its head node is a single-
output node.

- 64 -

Fig. 9. Inefficient mapping pruning conditions (1)

Fig. 10. Inefficient mapping pruning conditions (2)

2. A subgraph that consists only of single-output nodes.

3. A subgraph that consists only of single-input nodes.

The condition (1) is necessary to prohibit pruning the
essential subgraphs when the parent node has multiple
outputs. Consider the case where s is a subgraph headed
by a node that cannot be the head of the subgraph due to
Pruning 1 (Pruning redundant node replication). Since
s will be pruned by Pruning 1, subgraphs included by s
should be preserved; otherwise, the necessary subgraphs
are pruned by this pruning technique and no candidate
subgraphs will be left and the mapping will be terminated
midway (Fig.9).

The condition in (2) is necessary to prohibit pruning
for more efficient subgraphs, since the same number of
DSP blocks are used but may be mapped without node
replication (Fig.10).

The condition in (3) is unnecessary if the target DSP
block consists of arithmetic units connected linearly, but
it is necessary for pruning without loss of optimality when
the DSP blocks have a joining structure (Fig.11).

E. Graph Partitioning

The total number of subgraphs in the DFG is up to
MN , where M is the number of nodes in the DFG, and
N is the number of nodes in the DSP block, resulting
in a huge number of subgraph combinations. Thus, the
proposed algorithm reduces the number of searches by
dividing the graph and reducing the number of nodes in
the DFG mapped at a time.

Fig. 11. Inefficient mapping pruning conditions (3)

Fig. 12. Partitioning the graph by deleting edges

As an example, let us partition the graph in Fig.12.
Assume that node B is selected as the target node. When
its output destination nodes C and D cannot be mapped
with the same DSP block as node B, the output of node
B is required. Therefore, node B can be the end node,
nodes C and D can be the beginning node. That is why
we delete all the edges between nodes , C and D. If the
deleted edge is a bridge, the graph is partitioned.

IV. Performance Evaluation

This section presents the mapping results of the two
conventional methods, Greedy Segmentation and Im-
proved Segmentation, and the proposed method. We
compare them in terms of the number of DSP blocks,
the number of nets, the total number of arithmetic op-
erations, and the runtime. The number of nets refers to
the number of inter-DSP-block connections, which influ-
ences the routability of the FPGA. Since the result of
conventional methods depends on the order of node se-
lection, we executed them 100,000 trials while changing
the selection order randomly and obtained the number
of DSP blocks in the best case and total runtime. We
used three DFGs with 33, 58, and 100 operation nodes,
respectively, for the evaluation. The operations at each
node are randomly set up from addition, subtraction, and
multiplication. Each node has one or two inputs and its
output is connected to other nodes and/or external in-
puts/outputs. Similar to the previous studies, we used
the Xilinx DSP48E1 structure for the target DSP block.
We implemented both conventional and proposed algo-
rithms with Python (ver.3.6.9) and PyPy (ver.7.3.1). We
used Networkx (ver. 2.2) for graph manipulation.

Table I shows the mapping results by the conventional

- 65 -

TABLE I
Mapping results of proposed and conventional methods

(a) DFG with 33 nodes
Mapping method #DSP blocks #Net #Arith ops

Greedy 22 23 33
Improved 22 23 33
Proposed 20 21 36

(b) DFG with 58 nodes
Mapping method #DSP blocks #Net #Arith ops

Greedy 37 39 58
Improved 37 39 58
Proposed 33 35 63

(c) DFG with 100 nodes
Mapping method #DSP blocks #Net #Arith ops

Greedy 63 70 100
Improved 61 68 100
Proposed 56 63 107

and proposed methods. These results show that the pro-
posed method successfully reduces the number of DSP
blocks by 7.94-10.81%. Moreover, the number of nets
also decreases, which will improve the routability of the
FPGA.

Table II(a) shows the average runtime for 100,000 tri-
als for the conventional methods, and Table II(b) sum-
marizes the runtime for the proposed method. “NA” in
Table II(b) means that the mapping was not completed
within the time limit (86400 sec). Table II(b) presents
results with various combinations of techniques proposed
in this paper to clarify each method’s contribution. Prun-
ing 1 to 3 here corresponds to the methods described in
D.1 to D.3 in Section III, respectively. The results in
Table II(b) show that the proposed pruning method con-
tributes significantly to reducing the runtime. Table III
summarizes the graph partitioning results of the target
DFGs. Table III shows that graph partitioning enables
us to break up the 100-node DFG to DFGs of at most 54
nodes, thus reducing the time required.

Comparing Tables II(a) and II(b), the proposed
method’s runtime seems significantly longer than the con-
ventional ones. However, it is noteworthy that the conven-
tional methods are a heuristic search and require 100,000
trials to obtain high-quality mapping results shown in Ta-
ble I. Thanks to the pruning and graph partitioning tech-
niques developed in this study, the time required by the
proposed method is comparable to that of the conven-
tional methods for DFGs of the sizes tested in this study.

V. Conclusion

This paper proposed an exact-optimal technology map-
ping method based on an exhaustive search with applica-
bility to arbitrary single-output tree-structure DSP block
whose operation nodes have up to two fan-ins of FPGAs.
It detects valid configurations for a given complex DSP
block and automatically generates a template database.

TABLE II
Runtime for mapping in seconds

(a) Average runtime for 100,000 trials with conventional methods
Mapping method 33 nodes 58 nodes 100 nodes

Greedy 20.40 35.85 68.04
Improved 20.48 35.22 64.66

(b) Runtime with the proposed method
Mapping method 33 nodes 58 nodes 100 nodes

no pruning 151.78 NA NA
Pruning 1 16.6 NA NA
Pruning 1–2 1.75 304.83 NA
Pruning 1–3V 0.98 56.53 NA
Pruning 1–3S 0.69 7.17 3513.34

Pruning 1–3 + PartitioningV 0.87 16.97 247.32
Pruning 1–3 + PartitioningS 0.68 4.16 35.81

V : Applicable to any single-output DSP block architecture.
S: Applicable only to DSP blocks with linearly connected internal
nodes like Add-Mult-Add.

TABLE III
graph partitioning results

Number of nodes Number of
graph partitions

Maximum size of
partitioned graphs

33 nodes 4 28
58 nodes 6 49
100 nodes 13 54

In the exhaustive-search-based mapping algorithm, the
node replication technique reduces the DSP block usage,
especially when there are multi-fanout arithmetic nodes
in the given DFG. Furthermore, the pruning and graph
partitioning techniques reduce the runtime without los-
ing the optimality. However, it is necessary to further
reduce the time required when the number of nodes in
the DFG is more than 100. Comparisons of the mapping
results between the proposed and conventional methods
for DFGs with 33, 58, and 100 nodes show that the pro-
posed method reduces the number of DSP blocks by 7.94–
10.81%, at the cost of increased runtime.

References

[1] Amano, H.: Principles and Structures of FPGAs,
Springer (2018).

[2] Ronak, B. and Fahmy, S. A.: Mapping for Maximum
Performance on FPGA DSP Blocks, IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), Vol. 35, No. 4, pp. 573–585 (2016).

[3] Xilinx Corporation: 7 Series DSP48E1 Slice
User Guide, https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_
DSP48E1.pdf (2011).

- 66 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

