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Abstract— In this paper, the concept of Polyno-

mial Formal Verification (PFV) is reviewed. Then,

we introduce a hybrid verification engine to attack the

problem of verifying complex modern systems in poly-

nomial space and time. The engine takes advantage of

several verification techniques, such as combinational

equivalence checking based on bit-level approaches,

like SAT and Binary Decision Diagrams (BDDs), as

well as word-level verification based on e.g. Symbolic

Computer Algebra (SCA) and Word-Level Decision Di-

agrams (WLDDs). The correctness of each block or

system task can be ensured in polynomial time using a

specific verification technique from the environment.

Thus, we overcome the shortcomings of using only one

verification method and pave the way toward polyno-

mial verification of advanced architectures.

I. Introduction

Recently, the verification community has achieved
many successes in proving the correctness of a wide vari-
ety of digital circuits. Several formal methods based on
equivalence checking, model checking, and theorem prov-
ing have been proposed to verify both combinational and
sequential circuits. Particularly, the formal verification of
arithmetic circuits has gotten a lot of attention due to the
high complexity and big size of these circuits: (a) Binary
Decision Diagram (BDD) [21] and SAT-based [22] verifi-
cation methods report very good results for different types
of adder architectures, (b) Multiplicative Binary Moment
Diagrams (*BMDs) [13, 4] are used to verify multipliers,
and (c) Symbolic Computer Algebra (SCA) [20, 15, 25] is
employed to verify multipliers and dividers.

However, the main shortcoming of these techniques is
unpredictability in performance, leading to several verifi-
cation problems:

• It cannot be predicted before actually invoking the
verification tool whether it will successfully terminate
or run for an indefinite amount of time.

• The scalability of these techniques remains unknown,
i.e., it is not predictable how much the run-time and

the required memory increase when the size of the
circuit grows.

• It is not possible to compare the performance of ver-
ification methods for a specific design and choose the
best one.

In order to resolve the unpredictability of a verification
method, its time and space complexities have to be calcu-
lated. Knowing the complexity bounds for a verification
technique alleviates the three aforementioned verification
problems. We are particularly interested in space and
time complexities with the smallest possible polynomial
order, i.e. O(nc), where n is a circuit parameter (e.g. the
number of input bits) and c is a positive number. The con-
cept of Polynomial Formal Verification (PFV) was first
introduced in [6], where the author proved that PFV can
be applied to three adder architectures using Binary De-
cision Diagrams (BDDs). Shortly, the complexity bounds
for the verification of various circuits were calculated and
new PFV techniques were proposed. A formal verifica-
tion method with polynomial complexity bounds (time
and space), where the exponent in the polynomial is not
too high, is scalable and can be carried out successfully
for different circuit sizes.

Modern digital circuits consist of several sub-
components. For example, an Arithmetic Logic Unit
(ALU) is made of several sub-components to carry out
logic and arithmetic operations. It is usually the case that
a monolithic proof engine cannot ensure the correctness
of the entire circuit in polynomial space and time. For
example, a word-level proof engine cannot be used for the
PFV of the entire ALU. In this paper, we propose a hy-
brid proof engine to make the PFV of complex modern
systems possible. The engine takes advantage of both bit-
and word-level formal approaches. Thus, the correctness
of each block or system task can be ensured in polynomial
space and time using a specific verification approach from
the environment. We take advantage of two case stud-
ies, i.e., an ALU and a structurally complex multiplier, in
order to demonstrate the success of our hybrid proof en-
gine in PFV of complex circuits. It is an important step
toward PFV of highly complex designs, e.g., Central Pro-
cessing Units (CPUs), Digital Signal Processing (DSP)
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blocks, and AI-synthesized architectures.

A. Related Works

In the last few years, researchers have come up with
various PFV methods to resolve the verification unpre-
dictability. It includes 1) proving the polynomial bounds
for existing verification methods and 2) improving and
extending existing formal methods to obtain polynomial
upper-bound complexities [10].

PolyAdd [6] for the first time proved that the for-
mal verification of three adder architectures (i.e., ripple
carry adder, conditional sum adder, and carry look-ahead
adder) is possible in polynomial time using BDDs. The
proof is based on the fact that underlying BDDs remain
polynomial during the whole construction process. How-
ever, PolyAdd did not provide the upper-bound complex-
ities. The authors of [18] and [19] extended PolyAdd by
obtaining the upper-bound time complexities of condi-
tional sum adder and parallel prefix adders (i.e., serial pre-
fix adder, Ladner-Fischer adder, and Kogge-Stine adder).
They calculated the time complexities by adding up the
computational complexity of If-Then-Else (ITE) opera-
tion in each step of the symbolic simulation. Formal
verification of AI-generated prefix adders in polynomial
time was investigated in [9]. The authors of [12] proved
that PFV of a simple ALU, consisting of arithmetic and
logic operations, is possible. Authors of [23] focused on
the PFV of approximate adders. They proved that the
upper-bound time complexities of verifying approximate
ripple carry adder, conditional sum adder, and carry look-
ahead adder, as well as handcrafted approximate adders,
are polynomial using BDDs.

The authors of [5, 17] proposed a BDD-based verifi-
cation technique to ensure the correctness of multipliers.
They also proved that the output BDD sizes are poly-
nomial. However, they did not calculate the verification
complexity. The work of [16] considered the PFV of a mul-
tiplier for the first time. The authors demonstrated that
the verification of a Wallace-tree like multiplier can be car-
ried out in polynomial space and time using *BMDs. The
proof was extended by [1] to arithmetic circuits consist-
ing of multiplication and addition operations. Moreover,
the authors showed that PFV can be also performed using
SCA. The authors of [11] proved that SCA-based methods
have exponential upper-bound complexities when it comes
to verifying structurally complex multipliers. Then, they
came up with a hybrid formal method based on SCA and
BDDs to achieve polynomial bounds.

In addition to arithmetic circuits, there have been some
efforts to make PFV possible for other types of circuits.
The authors of [8] and [7] proved that ensuring the cor-
rectness of symmetric functions and tree-like circuits is
possible in polynomial space and time using BDDs. The
work of [24] proposed two methods to generate polynomi-
ally verifiable circuits for an approximate function.

In this paper, we highlight the limitations of a mono-
lithic proof engine in PFV of complex digital circuits.
Then, we propose a hybrid proof engine that takes ad-
vantage of bit- and word-level verification approaches to
overcome these limitations.

II. Background

In this section, we first review the bit-level verifica-
tion methods with a focus on BDDs. Then, we give an
overview of word-level methods, particularly SCA.

A. Verification using Bit-Level Techniques

In a bit-level verification method, a circuit is described
in the Boolean domain, i.e., the functions receive the in-
termediate and input signals as individual Boolean vari-
ables and return the outputs in the Boolean domain as
well. The verification method based on BDDs is one of
the examples of bit-level verification. In this section, we
focus on BDD-based verification.

We first briefly summarize some basics of BDD:

• Binary Decision Diagram (BDD): a directed,
acyclic graph whose nodes have two edges associated
with the values of the variables 0 and 1. A BDD con-
tains two terminal nodes (leaves) that are associated
with the values of the function 0 or 1.

• Ordered BDD (OBDD): a BDD, where the vari-
ables occur in the same order along each path from
the root to a leaf.

• Reduced OBDD (ROBDD): an OBDD that con-
tains a minimum number of nodes for a given variable
order.

We refer to ROBDD as BDD in the rest of the paper,
since it is the canonical representation that is used in the
verification of arithmetic circuits.

The ITE operator (If-Then-Else) [2] is used to calculate
the results of the logic operations in BDDs:

ITE(f, g, h) = (f ∧ g) ∨ (f ∧ h), (1)

The basic binary operations can be presented using the
ITE operator:

f ∧ g = ITE(f, g, 0), f ∨ g = ITE(f, 1, g),

f ⊕ g = ITE(f, g, g), f = ITE(f, 0, 1). (2)

In order to formally verify a circuit, we need to have the
BDD representation of the outputs. Symbolic simulation
helps us to obtain the BDD for each primary output. In
a simulation, an input pattern is applied to a circuit, and
the resulting output values are observed to see whether
they match the expected values. On the other hand, sym-
bolic simulation verifies a set of scalar tests (which usually
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covers the whole input space) with a single symbolic test.
Symbolic simulation using BDDs is done by generating
corresponding BDDs for the input signals. Then, starting
from primary inputs, the BDD for the output of a gate
(or a building block) is obtained using the ITE opera-
tion. This process continues until we reach the primary
outputs. Finally, the output BDDs are evaluated to see
whether they match the BDDs of the circuit.

B. Verification using Word-Level Techniques

In a word-level verification method, a circuit is de-
scribed in the integer domain, i.e., the functions receive
the intermediate and input signals as individual Boolean
variables and return the outputs in the integer domain.
The verification method based on SCA is one of the ex-
amples of word-level verification.

We now summarize some basics of SCA:

• Monomial: power product of the variables, i.e.
M = xa1

1 xa2
2 . . . xan

n , where ai ≥ 0.

• Polynomial: finite sum of monomials, i.e. P =
c1M1 + · · ·+ cjMj with coefficients in field k.

• Division: Assuming p is a polynomial and F is a set
of polynomials, the division of p by F is denoted by

p
F−→ r, where r is called a remainder.

The goal of SCA-based verification is to formally prove
that all signal assignments consistent with the gate-level
or AND Inverter Graph (AIG) representation evaluate the
Specification Polynomial (SP ) to 0. The SP determines
the word-level function of an arithmetic circuit based on
its inputs and outputs, e.g. for the half-adder of Fig. 1
SP = 2C + S − (A + B), where 2C + S represents the
word-level representation of the 2-bit output, and A + B
represents the addition of the 1-bit inputs.

Before verification, the gates of the circuit should be
modeled as polynomials describing the relation between
inputs and outputs. If the circuit is built from basic logic
gates (e.g., NOT, AND, OR, and XOR), four different
operations might happen in the circuit. Assuming z is
the output, and a and b are the inputs of a gate, the
polynomials for the basic logic gates are as follows:

z =¬a⇒ pg := z − 1 + a,

z =a ∧ b⇒ pg := z − a · b,
z =a ∨ b⇒ pg := z − a− b + a · b,
z =a⊕ b⇒ pg := z − a− b + 2a · b. (3)

The extracted gate polynomials are in the form Pg =
x − tail(Pg), where x is the gate’s output, and tail(Pg)
is a function based on the gate’s inputs. Similarly, the
polynomials for the nodes can be extracted in an AIG
representation (see [26, 20]).

Based on the Gröbner basis theory, all signal assign-
ments consistent with the AIG evaluate the specification

A

B
S

C

Fig. 1.: Half-adder

polynomial SP to 0, iff the remainder of dividing SP by
the gate polynomials is equal to 0 (see [15] for more de-
tails).

The step-wise division of SP by gate polynomials for
the half-adder of Fig. 1 is as follows:

SP := 2C + S − (A + B),

SP
PAND−−−−→ SP1 = 2AB + S − (A + B),

SP1
PXOR−−−−→ r = 0. (4)

Since the remainder is zero, the circuit is bug-free. In
arithmetic circuits, dividing SPi by a gate polynomial
Pgi = xi − tail(Pgi) is equivalent to substituting xi with
tail(Pgi) in SPi. For example, dividing SP1 by PXOR in
Eq. (4) is equivalent to substituting S with tail(PXOR) =
A + B − 2A ·B in SP1. In the results, we always replace
powers xai

i with ai > 1 by xi, since xi can only take values
from {0, 1}. In the theory, this corresponds to adding
x2
i − xi to the gate polynomials. The process of step-wise

division (substitution) is called backward rewriting.

III. PFV using a Hybrid Proof Engine

In this section, we first introduce our hybrid proof en-
gine that uses both bit- and word-level approaches for
PFV. Then, we present two case studies to illustrate the
applications of our hybrid proof engine.

A. Overview

Despite the progress in PFV of various circuits, most of
the works are still limited to the polynomial verification
of individual components, e.g., adders, and are based on
a monolithic proof engine. Thus, the PFV of complex
systems, consisting of many different sub-components,
is an almost unexplored area. The challenge originates
from the fact that a verification method (e.g., equiva-
lence checking using BDDs) might verify a sub-component
(e.g., an adder) in polynomial time but have an expo-
nential verification complexity for another sub-component
(e.g., a multiplier).

We propose a hybrid proof engine that integrates both
bit- and word-level approaches in an environment. As
a result, the verification is not limited to a single for-
mal method. Each sub-component or system task can
be verified using a suitable formal approach that ensures
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Fig. 2.: Symbolic representation of the ALU

TABLE I

: List of supported operations

s2 s1 s0 function
0 0 0 0 . . . 0
0 0 1 b− a
0 1 0 a− b
0 1 1 a + b
1 0 0 a× b
1 0 1 a⊕ b
1 1 0 a ∨ b
1 1 1 a ∧ b

PFV. Consequently, PFV can be applied to complex cir-
cuits which could not be verified using a single formal
method in polynomial space and time. We take advan-
tage of BDDs and SCA as our bit-level and word-level ver-
ification methods in our hybrid proof engine, since their
polynomial upper-bounds have been proven for a wide va-
riety of circuits (see e.g., [18, 19, 11, 1]).

B. Case Study I: PFV of an ALU

An ALU is a combinational digital circuit that performs
arithmetic and bitwise operations on integer binary num-
bers. The type and the number of supported operations
in an ALU depend on the application. Fig. 2 shows the
symbolic representation of a general ALU. It receives two
n-bit inputs a and b. The operation between the inputs is
determined by an m-bit select. Finally, the result of the
operation is returned as a 2n-bit output.

In this paper, we consider an ALU with 8 operations,
i.e. the select signal has 3 bits. The complete list of sup-
ported operations is depicted in Table I. The ALU can
perform three arithmetic operations (i.e., addition, sub-
tractions, and multiplication) as well as three bitwise logic
operations (i.e., XOR, OR, and AND).

The addition and subtraction are implemented based
on the carry look-ahead algorithm. On the other hand,
the architectures for the three stages of the multiplier (see
Fig. 3) are as follows: simple partial product generator,
array, and ripple carry adder. The multiplier is struc-
turally simple, since the second and third stages are only
made of half-adders and full-adders.

 

Partial Product Generator
(PPG)

Partial Product Accumulator
(PPA)

Final Stage Adder
(FSA)

Multiplier Multiplicand

Product

SP: Simple Partial Product Generator
BP: Booth Partial Product Generator

AR: Array
CT: Compressor Tree

WT: Wallace Tree

DT: Dadda Tree

RC: Ripple Carry adder
BK: Brent-Kung adder

CL: Carry Look-ahead adder
LF: Lander-Fischer adder

Fig. 3.: Multiplier structure

We now discuss the results of verifying the ALU using
a monolithic proof engine based on BDDs and SCA:

• BDD-based verification reports very good results
when it comes to ensuring the correctness of various
adder architectures. It has been proven in [6] that
carry look-ahead adder can be verified in polynomial
space and time using BDDs. PFV can be also applied
to the subtractor, since it is built by adding XOR
gates to the inputs of the adder. However, BDD-
based verification runs out of memory when it comes
to the verification of multipliers. It has been proven
in [3] that the size of output BDDs becomes exponen-
tial for a multiplier. As a result, a monolithic proof
engine based on BDDs cannot be used for the PFV
of the entire ALU.

• SCA-based verification has shown very good results
for the verification of structurally simple multipliers.
The experimental results demonstrated the efficiency
of SCA-based verification in proving the correctness
of million-gate multipliers [20]. In addition, it has
been shown that the PFV of structurally simple mul-
tipliers is possible using SCA [11]. However, SCA-
based methods run quickly out of memory when it
comes to the verification of adders that are not only
made of half-adders and full-adders. The authors
of [11] have proven that the size of intermediate poly-
nomials becomes exponential during the verification
of a carry look-ahead adder. As a result, a mono-
lithic proof engine based on SCA cannot be used for
the PFV of the entire ALU.

We can overcome the limitations of monolithic proof en-
gines in verifying the ALU by using our hybrid proof en-
gine. The verification of logic operations (AND, OR, and
XOR) as well as addition and subtraction is performed
using BDDs in polynomial space and time. Moreover, the
SCA-based method is used for the PFV of the multiplica-
tion operation. As a result, the entire ALU can be verified
polynomially using our hybrid proof engine.
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Fig. 4.: 4× 4 structurally complex multiplier

C. Case Study II: PFV of a Structurally Complex Mul-
tiplier

If the second and third stages of a multiplier (see Fig. 3)
are not only made of half-adders and full-adders, it is
called a structurally complex multiplier. Fig. 4 depicts
a 4 × 4 structurally complex multiplier, where the final
stage adder has a carry look-ahead adder architecture.
Ensuring the correctness of structurally complex multi-
pliers is a big challenge for the verification community.
Several formal verification methods based on SCA have
been proposed to overcome the challenges [20, 14]. How-
ever, it is not trivial to prove their polynomial complexity
for all multiplier architectures due to some heuristics in
their flow.

We now discuss the results of verifying the complex
multiplier using a monolithic proof engine based on BDDs
and SCA:

• Similar to the structurally simple multipliers, the size
of output BDDs becomes exponential for structurally
complex multipliers. Several techniques have been
proposed to make the verification of multipliers pos-
sible using BDDs. The work of [5] considers the par-
tial products as new input variables and constructs
the output BDDs based on them. As a result, the
size of output BDDs becomes polynomial with re-
spect to the input width. However, it is still not clear
whether the size of intermediate BDDs is polynomi-
ally bounded during the symbolic simulation. Thus,
BDD-based verification cannot ensure the PFV of
structurally complex multipliers.

• Although SCA-based verification has shown very
good results for the verification of structurally sim-
ple multipliers, it fails when it comes to ensuring the
correctness of structurally complex multipliers. It

A1B3 A3B1 A1B2 A2B1 A0B3 A0B2 A2B0 A1B1 A0B1 A1B0

Z0

A2B3 A3B2 A2B2 A3B0

A3B3

A0B0

Z1Z2Z3Z4Z5Z6Z7

HA

HA

HA

HA

FAFA

FAFAFA

FAFAFA

Fig. 5.: 4× 4 structurally simple multiplier

has been shown experimentally that the size of inter-
mediate polynomials grows drastically during back-
ward rewriting. The authors of [11] proved that the
size of intermediate polynomials increases exponen-
tially for structurally complex multipliers. As a re-
sult, a monolithic proof engine based on SCA cannot
be used for the PFV of a structurally complex mul-
tiplier.

If the design hierarchy, including the boundaries be-
tween the three stages of the multiplier (i.e. PPG, PPA,
and FSA) and the components in each stage are avail-
able, we can take advantage of our hybrid proof engine to
ensure the correctness of the structurally complex multi-
plier. Our method consists of three main steps:

1. the final stage of the multiplier, i.e. FSA, is replaced
with a ripple carry adder,

2. the new multiplier architecture is verified using SCA,

3. the FSA is verified using BDDs.

If both verification methods ensure correctness, the
multiplier is bug-free. Otherwise, it is buggy.

It is now possible to calculate the space and time com-
plexity of SCA and BDD-based methods separately and
prove their polynomial upper-bounds with respect to the
multiplier size: After replacing the FSA with a ripple
carry adder, the new multiplier is structurally simple,
since the second and third stages are made of half-adders
and full-adders (see Fig. 5). It has been proven in [11] that
structurally simple multipliers can be verified in polyno-
mial space and time using SCA. On the other hand, PFV
can be applied to the original FSA using BDDs as proven
in [6]. As a consequence, PFV of structurally complex
multipliers becomes possible.

IV. Conclusions

In this paper, we illustrated the importance of using
a hybrid proof engine for PFV. Complex digital circuits
usually consist of many sub-components, which can be
verified in polynomial space and time using a suitable ver-
ification technique. However, the PFV cannot be guaran-
teed using a monolithic proof engine. This problem can
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be alleviated by introducing a hybrid proof engine that
integrates bit- and word-level formal methods in an en-
vironment. Thus, each sub-component or system task is
verified using one of the formal methods in polynomial
space and time. We discussed the success of a hybrid
proof engine in the PFV of an ALU and a structurally
complex multiplier.

In the future, we plan to investigate the PFV of other
complex digital circuits such as CPUs and DSP blocks
using a hybrid verification engine.
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