
A Scalable Linear Equation Solver FPGA using High-Level Synthesis

Haopeng Meng Kazutoshi Wakabayashi Tadahiro Kuroda

The University of Tokyo System Design Research Center System Design Research Center
Tokyo, 112-0015 Tokyo, 112-0015 Tokyo, 112-0015

meng@kuroda.t.u-tokyo.ac.jp wakaba@dlab.t.u-tokyo.ac.jp kuroda@dlab.t.u-tokyo.ac.jp

Abstract —– This paper mainly describes a scal-
able linear equation solver in FPGA based on Gauss-
Jordan Elimination using high-level synthesis (HLS).
A C++ generator is created in this work to obtain the
HLS code for synthesis, which is able to balance area
and performance of sovler by few parameters. Com-
pared with the traditional RTL design, it has higher
design efficiency. In the case of best performance,
the solver has time complexity of o(N). Due to the
high efficient in design, this scalable linear equation
solver also could be used as IP in another design. The
result is synthesized in NEC CyberWorkBench HLS,
and RTL synthesis in Xilinx Vivado, ZYNQ Ultra-
Scale+, and ZCU104 Evaluation Kit at 200 MHz.

Key Words —– High-Level Synthesis, Linear Equa-
tion Solver, FPGA, C-Based Design

I. Introduction

In today’s engineering applications, finding solution
to a large set of simultaneous linear equations is re-
quired for a vast variety of problems, such as Finite El-
ement Analysis, real-time circuit simulation, and dig-
ital signal/video processing. A linear equation prob-
lem can be rearranged into a matrix form, as shown
in equation 1, where each equation becomes a row in
the matrix.

In the literature, there are two common categories
of methods for solving simultaneous linear equations:
direct and iterative. Direct methods include LU
(lower-upper triangular) decomposition, QR decom-
position, and Cholesky decomposition which can typ-
ically be used for dense linear systems [8]. Itera-
tive methods include Jacobi, Gauss-Seidel, and relax-
ation iterations, which are suitable for sparse linear
systems[9]. This work focuses on dense linear systems
and considers flexible scalable implementation of the
solver in FPGA using high-level synthesis (HLS). This
can significantly improve design efficiency and make it
more convenient to use the linear equation solver as
an IP in any other application.

The simplest direct method is to use the Gauss
elimination algorithm. The Gauss elimination proce-
dure updates the matrix continuously by applying a
sequence of basic row operations to the lower por-
tion of the matrix until the lower left-hand corner

of the matrix becomes filled with zeros. This is also
the algorithm of LU decomposition. It does not di-
rectly output the solution of the linear equations. A
method improved from LU decomposition is also used
in some FPGA design[2], called Gauss-Jordan Elimi-
nation. Unlike the LU method, this not only elimi-
nates the lower triangular of the matrix, but also the
upper triangular part. When only the diagonal of the
coefficient matrix is left, the solution of the equation
could be obtained.

II. Related Work

Linear equation solvers using matrix decomposi-
tion are implemented in different forms, such as soft-
ware programming, systolic array FPGA[1], block LU
FPGA[3][5], and GPU accelerator[4][6][7]. The high
availability of CPU, the high performance of FPGA,
and the efficient application of GPU to solve sparse
matrices are reasons of their widespread adoption.

Linear equation solvers using CPU focus on cache
hit. Solving linear equation problems requires read-
ing and writing a large amount of data in a short time,
so cache hit optimization of CPU software is very im-
portant. But no matter how you optimize, there will
always be limitations, which are determined by the
characteristics of the CPU. Performance bottlenecks
will always occur when the problem size is too large.

Field programmable gate arrays (FPGAs) are one
type of semiconductor IC device that consists of a
large number of reconfigurable logic units, and many
programmable input/output blocks and interconnects.
Since the programmable logic arrays on FPGAs are
massively parallel, they naturally allow for parallel
processing of a large amount of data. So good FPGA
designs will always achieve higher performance and
energy efficiency, even if they typically operate at
only 200-300MHz. Systolic array FPGA is therefore a
great way to implement linear equation solvers. It has
the highest degree of parallelism in theory. But the
area is o

Ä
N2
ä
, which makes it difficult to implement in

one FPGA for large problems. In addition, due to the
use of traditional RTL design, the build is not flexible
and works only for a fixed throughput, which often
causes excess performance when demand is low.

This work uses HLS for a scalable design and a C++

SASIMI 2022 ProceedingsB-7

- 145 -



Fig. 1. Row Operation in Gauss Elimination, Making the first
element in a row to 0, and update subsequent elements in
sequence.

Fig. 2. Column Update in Gauss Elimination. In the same
column, only the elements in the diagonal position are 1, and the
other positions are 0.

generator to achieve auto-optimization in synthesis.
In addition, it delivers a maximum performance of
o (N), , same as systolic array FPGA[1]. And com-
pared with VHDL/Verilog, since fewer lines of the
code and scalable design by generator is used, the de-
sign efficiency is significantly improved.

III. Linear Equation Solver Algorithm

A. Gauss Elimination


a11 a12 a13 ... a1n

a21 a22 a23 ... a2n

a31 a32 a33 ... a3n

...
an1 an2 an3 ... ann



x1

x2

x3

...
xn

 =


b1
b2
b3
...
bn

 (1)

The general system of linear equations is shown as
equation 1. It is usually solved using Gauss Elimi-
nation. Figures 1-3 illustrate the procedure of Gauss
Elimination, which is the foundation of the FPGA lin-
ear equation solver being proposed. The main tasks
of the repetitive elimination in the Gauss Elimination
procedure include three steps: row operation, column
update, iteration.

B. Algorithm

Each step of Gauss Elimination is a loop executing
a row operation, column update, and iteration as de-
scribed in Figures 1, 2, and 3 respectively. The code
for a triple loop is shown in Figure 4. When solving
for a system of linear equations of size N, o

Ä
N3
ä

time
is required. Besides, because of data dependency in

Fig. 3. Row Operation in Gauss Elimination, Iteration to the
right in sequence, the left side of the matrix is the identity matrix.
On the right is the result of linear equation.

iteration, the steps in Figure 3 cannot be executed in
parallel. The row operation and column update can
be accelerated by parallel computing. Although the
number of operators can be increased to improve per-
formance, it also requires more memory bandwidth,
which needs to be balanced.

Fig. 4. Triple loop of Gauss Elimination codes.

IV. Scalable Architecture

The proposed process pipeline for the linear equa-
tion solver is shown in Figure 5. The unroll time m
defines the degree of parallelism. When m is incresed,
the solution time for same problem size is reduced.
The pipeline stage number P defines the throughput
of the solver. When the problem size and the degree
of parallelism m are the same, increasing P improves
the throughput of the solver, it used to solve multiple
linear equation at the same time.

A. Unroll Time and Memory Acess

The adjustment of parallelism is achieved using loop
unroll, as shown in Figure 6. When the unroll time
is set to 4, the 4 elements in red are calculated at
the same time. The unroll time is set in the HLS
code. Here, the larger the unroll time is, the higher
the parallelism and the more efficient the computa-
tion. When the unroll time is the same as the prob-
lem size, it is fully unrolled and the solver reaches its
maximum performance. Its time complexity is o(n).
However, when the unroll time is increased, higher
memory bandwidth is required for calculator access.
This limits the improvement of parallelism in large

- 146 -



Fig. 5. Scalable pipeline architecture in proposed. P is the define
of pipeline stage number. m is the degree of parallelism.

Fig. 6. Parallelize the parts without data dependency by setting
the unroll time.

scale linear equation solvers. Therefore, o(n) is usu-
ally difficult to achieve in practical applications. De-
termining how to adjust unroll time m and pipeline
stage number to obtain suitable performance is the
core purpose of this work.

Figure 7 shows the memory access when unroll time
is set to 4 in Figure 6. This allows simultaneous access
to four elements in the array to meet the parallel com-
puting requirements in Figure 6. Like the unroll time,
the number of memory partitions cannot be increased
indefinitely, and it should be set with reference to the
unroll time.

B. Process Pipeline and Throughput

The effect of pipeline stage number P is shown in
Figures 8 and 9. Figure 8 shows the process pipeline
execution time of Figure 5. For a system of linear
equations of size 8, only two columns are calculated
per stage. When the pipeline stage number increases
to 6 or 8, the architecture is shown in Figure 9. P is
defined in the generator in section V.

C. Area Optimization

The amount of calculation in each stage of the solver
is not the same. In order to reduce waste of resources,
it is necessary to balance the amount of calculation

Fig. 7. By setting array div, the data is stored in multiple
memories to get parallel access. The figure uses 4 memories and is
able to update 4 elements at the same time.It divided memory into
4 parts by 2 times rows and 2 times columns, which is defined in
ROM-DIV = Rows:Columns = 2:2.

Fig. 8. The throughput of process pipeline in 4-stage pipeline.

in each stage or the number of calculation units to
ensure that the delay of each stage is about the same.
As shown in Figure 5, the part in grey of the identity
matrix does not need data transfer and is not needed
by the calculation in the next stage. The optimized
structure is shown in Figure 10. Excess memory is
removed here (Up).

Besides, since the number of columns is also re-
duced, the amount of computation for row updates
is also gradually decreasing. As shown in Figure 10
(lower half), the total amount of computation for
updates in columns 5-8 is less than for updates in
columns 1-2. Therefore, 4 stages can be optimized
to 3 stages. The throughput and latency are the same
as before. This optimization is performed in the gen-
erator in section V and is done automatically when
problem size N, unroll time M, and pipeline stage P
are defined.

V. Generator for HLS

A. C++ Generator for HLS Overview

Unlike traditional HLS design, our proposal uses a
C++ generator to generate HLS-specific code. This
type of design has two advantages: more freedom to
customize the scale of the solver and automatic opti-
mization using a program.

Traditional HLS usually has special rules and can-
not be directly synthesized using a general C++ pro-
gram. When the construction is more complex, a large
number of functions are usually required to describe
it. We use a generator to generate these functions in
batches and automatically add HLS-specific parame-
ters, as shown in Figure 11. The example in proposed
using different scale of function unit in each stage.
When the problem size N, unroll time M, and pipeline
stage number P are defined, the generator can output

- 147 -



Fig. 9. Increasing the pipeline stage number (P) of solver will
make more linear equation to be calculated at the same time. Due
to the need for data transfer between stages, the delay time will
increase slightly. In practical applications, delay time and
throughput need to be balanced.

Fig. 10. Balance the amount of computation between stages to
reduce the number of stage and area.

multiple designs for trade-off. This can significantly
improve design efficiency and facilitate the use of lin-
ear equation solvers as IP in larger-scale designs for
any application.

B. Area Optimization Procedure

In order to balance the amount of computation, you
first need to know the total amount of computation
when the problem size is N, and the amount of com-
putation for each column update. As shown in Figure
12, when the k’th column is updated, the elements to
be updated are all the elements on the right, calcu-
lated by the equation in Figure 12. The totalamount
of calculation is shown in Equation 2.

For an example of size 8, the amount of calcula-
tion and total amount of calculation of column update
can be obtained as shown in Equation 2. When the
pipeline stage number is set to P, the amount of cal-
culation is balanced in the following order:

• • Calculate the average amount of calculation per
stage, which is obtained by P and Call.

• • The amount of calculation is accumulated in
turn, and when the average amount of calculation

Fig. 11. C++ Generator for HLS

is exceeded, it is cut off for the current stage, and
the rest is moved to the next stage.

• Summarized as segmentation

Fig. 12. When N is determined, the calculation amount of each
column update is calculated as the formula.

Call =

N∑
k=1

N(N + 1− k) (1)

N = 8, C = {64, 56, 48, 40, 32, 24, 16, 8}, Call = 288 (2)

When the pipeline stage is set to 2 for size 8, the
average amount of calculation is 144, which is Call/2 in
equation 2. In the second step, the sum of the amount
of calculation of the first two columns is 120, and that
of the first three columns is 168. Therefore, it is cut
off at the third column, and columns 1-2 and 3-8 are
divided into two stages. It can be seen here that the
division when P is 8 is invalid. The throughput in
P=8 is limited by the amount of computation in the
first column. In this step the delay time is affected
due to the extra stage.

VI. Evaluation and Result

The result is synthesized in NEC CyberWorkBench
HLS, and RTL synthesis in Xilinx Vivado, ZYNQ Ul-
traScale+, and ZCU104 Evaluation Kit. The CPUs
used in our comparison are the x86 CPU Xeon E-2146

- 148 -



12 cores @4.5Ghz (max is 4.5GHz) in single preci-
sion, and the ARM CPU Broadcom BCM2835 4 cores
@1.5GHz in single precision. The HLS design is syn-
thesized at 200MHz.

A. Synthesis Result

Table 1 shows the synthesis results for different
problem sizes. Since the example is in a small scale,
the unroll time m is set to N, same as the problem
size, which is called full unroll. It achieves the highest
performance for the same size, but it will cost a lot
of area. When the size is increased beyond a certain
point, full unroll will become impossible. To meet the
requirements of the real applications, adjustment of
unroll time will be necessary.

Table 2 shows the synthesis results for different
pipeline stage numbers. When problem size is the
same, increasing pipeline stage number P will signifi-
cantly improve performance at the expense of latency.
Full unroll is also used in this example, which means
the unroll time is the same as problem size.

B. Comparison

Figure 13 shows the latency comparison with CPU
and conventional systolic array FPGA. For the triple
loop of Gauss Elimination, the CPU execution time
is o

Ä
N3
ä
. For the systolic array FPGA, it is o (N).

Its area is fixed and performance may be an overkill
when demand is low. And a large scale systolic array
is difficult to design. In our proposed automatically
generated HLS design, it is easy to balance between
performance and area by changing the setup parame-
ters (N,M,P).

As shown in Figure 14, the biggest advantage of
our proposed solution is flexibility in design trade-off.
Unlike CPUs, increasing (N,M,P) of our solver will

Fig. 13. Design purpose and latency comparison with cpu and
systolic array.

definitely bring performance improvement and area
increase. This certainty will facilitate decision-making
in practical applications. In addition, it is more con-
venient to be able to use the linear equation solver as
an IP to be a part of a very large-scale ASIC.

Fig. 14. Performance comparison with CPU. By changing problem
size N, unroll time M and pipeline stage number P, any scale of
solver could be synthesised for application requirement.

Table 3 shows the performance comparison with the
systolic array FPGA from another paper. When the
size is small, the structure of the systolic array be-
comes superior. When the size increases, the advan-
tage of the proposed HLS design gradually appears. In
larger scale designs or applications requiring flexible
design, the proposed HLS design becomes convenient.

- 149 -



Acknowledgements

The test data was provided by NEC corporation,
which is irreplaceable in this research. Without the
help, this paper could not have been finished in time.

This paper is based on results obtained from a
project,JPNP16007, commissioned by the New En-
ergy and Industrial Technology Development Organi-
zation (NEDO).

References

[1] LIU Shu-yong, WU Yan-xia, ZHANG Bo-wei, ZHANG
Guo-yin, DAI Kui, “Research of parallel hardware ar-
chitecture for matrix triangularization decomposition
based on reconfigurable computing system,” Acta Elec-
tronica Sinica, Vol. 43, pp. 1642-1650, 2015.

[2] Zhenhua Jiang; Sayed Ata Raziei, “An efficient FPGA-
based direct linear solver,” IEEE National Aerospace
and Electronics Conference (NAECON), 2017.

[3] Manish Kumar Jaiswal; Nitin Chandrachoodan,
“FPGA-Based High-Performance and Scalable Block
LU Decomposition Architecture,” IEEE Transactions
on Computers, Vol. 61, pp. 60-72, 2012.

[4] Tingxing Dong; Azzam Haidar; Piotr Luszczek; James
Austin Harris; Stanimire Tomov; Jack Dongarra, “LU
Factorization of Small Matrices: Accelerating Batched
DGETRF on the GPU,” 2014 IEEE Intl Conf on
High Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security,
2014 IEEE 11th Intl Conf on Embedded Software and Syst
(HPCC,CSS,ICESS)

[5] Baoguang Fang; Shuqiang Chen; Xulong Wei, “Single-
precision LU decomposition based on FPGA compared
with CPU,” 2012 International Conference on Computa-
tional Problem-Solving (ICCP)

[6] M. J. Inman, A. Elsherbeni, C. Reddy, “CUDA Based
LU Decomposition Solvers for CEM Applications,”
ACES JOURNAL, Vol. 25, 2010.

[7] G´eraud P. Krawezik, Gene Poole, “Accelerating the
ANSYS Direct Sparse Solver with GPUs,” Symposium
on Application Accelerators in High-Performance Com-
puting (SAAHPC), 2009.

[8] Tingxing Dong; Azzam Haidar; Stanimire Tomov; Jack
Dongarra, “A Fast Batched Cholesky Factorization on
a GPU,” 2014 43rd International Conference on Parallel
Processing

[9] Manashwi Tamuli; Shreyasee Debnath; Ashok Ray;
Swanirbhar Majumdar, “Implementation of Jacobi it-
erative solver in verilog HDL,” 2016 2nd International
Conference on Control, Instrumentation, Energy & Com-
munication (CIEC)

- 150 -


