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Abstract— The demand for deep learning has in-

creased, and many accelerators have been proposed.

Although they perform inference at high speed, many

of them have problems in training. We present the

”tail layer training” for a convolutional neural net-

work (CNN). It is implemented with DPU, a CNN

accelerator provided by Xilinx, and a CPU. It retains

a high computational speed compared to conventional

methods because most of the CNN can be processed

by the accelerator. On the other hand, only the tail

layer is updated by the CPU, enabling the weights to

be updated or added. Since the number of neurons

and classes in the output must be the same for im-

age classification, it is effective for retraining to count

the number of classes. We found that domain similar-

ity between existing classes and classes to be added

is important in CIFAR10 and ImageNet datasets for

tail layer training. Accuracy loss is negligible when

training only the tail layer with two added categories.

The processing speed reduction was almost negligible.

Our scheme can be applied to the all existing SoC-

FPGA-based CNN accelerator.

I. Introduction

Deep learning models are widely used in a variety of
fields, with image classification at the top of the list,
for example Classification[1], Object Detection[2], Face
Detection[3], Segmentation[4], Pose Estimation[5], Molec-
ular Depth Estimation[6], Super Resolution[7], GAN:
Generative Advisal Network[8], etc. Most of these ap-
plications are based on Convolutional Neural Network
(CNN)[9].

CNNs need a massive number of parameters and
computational complexity compared to existing machine
learning models. Therefore, while they are suitable for
training complex tasks with large amounts of data, they
are also computationally demanding. Thus, CNN-specific
accelerators have been developed and used in embedded

systems that require high speed and low power consump-
tion. However, many accelerators cannot train on the
accelerator because they require pre-optimization (quan-
tization and sparsification) and compilation of the trained
model. In FPGAs, DPU (Deep learning Processor Unit)
developed by Xilinx can be used for fast inference with
learned models, but it does not support training. In con-
trast, embedded systems may require training on edge
after design with additional functionality or updates. For
example, face recognition has recently been developed as
a seamless authentication method. Face recognition sys-
tems are expected to be used in various locations, so there
may be some situations where the system is not connected
to a network. In this case, it is difficult to train a new
face for authentication using only an edge terminal.

This paper proposes a method to implement additional
hardware and training algorithms in a DPU, one of the
CNN accelerators, and perform other training on the
CPU. Typically, CNNs are trained using backpropaga-
tion. It calculates the error between the training data and
the correct data for all layers and updates the parameters
while controlling overfitting by the learning rate. There-
fore, it requires many computer resources and time and
is unsuitable for embedded systems. In contrast, adding
or updating functionality in embedded systems is often
limited, and the tasks are often the same with limited
additional data. Fine-tuning is a method for fast conver-
gence of CNN training. It replicates some of the param-
eters of the trained model to a part of the CNN model
to be trained. Thus, making the trend of the target
model closer to that of the trained model. For example,
fine-tuning on ImageNet can converge in a short train-
ing epoch in image recognition tasks. In this paper, we
target a classification task and propose to add a training
function to the accelerator by making only the tail layer
of the CNN independent. Only the tail layer is trained
in software using an ARM processor on an FPGA, and
the trained parameters are reflected in the hardware ded-
icated to the tail layer. In the classification task, the first
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part of the CNN is considered the feature extraction of the
image. The last part is considered to be the encoding of
the extracted features into a class index that humans can
understand. If this assumption is correct, the classifica-
tion task can be re-trained by implementing a pre-trained
model in the same domain with a DPU and training only
the encoding part at the tail layer.
The structure of this paper is as follows. Chapter 2

describes related research and tools such as CNN, PCA.
Chapter 3 describes the proposed method of tail layer
training. Chapter 4 presents experiments and a discussion
of the proposed method, and Chapter 5 concludes the
paper.
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Fig. 1. Convolutional Layer Overview.

II. Related Work

A. CNN (Convolutional Neural Network)

A CNN (Convolutional Neural Network) is a deep learn-
ing model used for tasks such as image classification,
which automatically extracts features from images by per-
forming two-dimensional convolution. Typically, models
used for image classification require that the number of
neurons in the output layer matches the number of clas-
sification classes. Therefore, the CNN must be re-trained
with all the data when adding a class.
CNN models such as VGG[10], ResNet[11], and

MobileNetV2[12] have already been proposed, which use
a convolutional layer, a pooling layer, and a fully con-
nected layer. The convolutional layer (conv layer) has a
structure like Fig. 1. The output is determined by the
sum of the product of the weights assigned to the convo-
lution window and the input, and this process is applied
by shifting the window. It has the effect of extracting
a variety of features. The pooling layer has the effect of
compressing the size of the input by obtaining representa-
tive values. There are two methods for selecting expected
values: max pooling (selecting the maximum value within
a specific range) and average pooling (setting the average
value). These are weightless because they are determined
from the input values only. In the fully connected layer
(fc layer), the output is determined from the sum of the
product of the inputs and weights. Still, there are as many

weights as the product of the number of input dimensions
and the number of output dimensions. In VGG, ResNet
and MobileNetV2, the all-connected layer is used at the
end of the model.

B. PCA (Principal Component Analysis)

Principal Component Analysis (PCA) is a method of
changing the dimensions of multi-dimensional data while
preserving as many of its characteristics as possible. The
axis that best represents the information content of the
original data is the first principal component, the axis or-
thogonal to the first principal component and meaning
the second most information content is the second prin-
cipal component, and so on. Since the dimension can be
changed arbitrarily while maintaining the characteristics
as much as possible, the data can be compressed to two
dimensions and plotted on a planar diagram to confirm
the relationship between the data visually.

III. Proposed Method

Fig. 2. Tail Layer (fc3) Training in VGG16.

Fig. 3. Tail Layer (fc) Training in ResNet50.

A. Tail Layer Training

The number of neurons in the output layer of the CNN
must match the number of classes to be classified. There-
fore, when additional classes are desired, the model must
be changed to one with an increased number of output
neurons and retrained.
Assuming that features can be extracted while the in-

put passes through many layers of the CNN, it is pos-
sible to achieve sufficient accuracy by simply retraining
the mapping between features and labels in the tail layer.
This training is defined as tail layer training. In this pa-
per, we propose two methods for training the tail layer:
one is to use a randomly determined initial value, and
the other is to train only the additional classes without
updating the weights of the existing classes.
Fig. 2 shows an example of tail layer training when

VGG16 is used. Fig. 3 shows an example of tail layer
training when ResNet50 is used. The layers shown in
white in Fig. 2 and Fig. 3 are the layers whose weights
are not updated in the tail layer training. Therefore, only
inference is performed on the input images. In contrast,
the tail layer shown in blue is the fully connected layer (fc
layer) for both VGG16 and ResNet50.
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The inference-only layer reuses the same weights.
Therefore, using pre-trained weights and compiling only
the portions of VGG and ResNet without the tail layer
can be computed faster using DPUs. Since this part of
the model represents a large portion of the model, it can
significantly reduce the computational cost compared to
training the entire model. Since this part of the model
represents a large portion, it can dramatically reduce
the computational cost compared to training the whole
model. Since this part of the model represents a signifi-
cant portion. For example, VGG16 has 134M parameters.
Of these, the input for the tail layer has 4,096 dimen-
sions. Therefore, the number of parameters in the tail
layer paramfin can be said to be

paramfin = 4096× 1000 + 1000 (1)

≃ 0.41M. (2)

Only about 0.3% of the total parameters need to be
trained. In addition, the output of the layers whose
weights do not change as the training progresses. The
training process can be made even faster in the second
and subsequent epochs by saving the output at the DPU
when training with the same image.

B. Tail Layer Training to Use Randomly Determined
Initial Value

This method does not use the weights used in the origi-
nal model but gives the randomly determined initial value.
The tail layer is discarded, and a new layer is attached
with a different number of output neurons. Instead of
discarding parameters that are already accurate, the ad-
vantage is that weights can be trained, including the bal-
ance between additional classes and existing classes. This
method is sometimes called transition learning.

Fig. 4. Example of Training Only the Additional Classes without
Updating the Weights of the Existing Classes.

C. Tail Layer Training with Training Only the Addi-
tional Classes without Updating the Weights of the
Existing Classes

We also propose a method for training only the addi-
tional classes without updating the weights for the exist-
ing classes. In other words, since the weights are already
sufficiently accurate, they are reused.
A schematic diagram of this training method is shown

in Fig. 4. Here, the left side of the Fig. 4 shows the weights
before retraining for the tail layer, the fully connected
layer, and the right side shows the weights after retraining.

The green circle represents the input of the tail layer,
the blue circle represents the neuron corresponding to the
class that exists from the beginning among the outputs
of the tail layer, and the red circle represents the neuron
in the tail layer corresponding to the class be added. The
line segments connecting the neurons represent weights,
and the green weights corresponding to existing classes
remain unchanged before and after training.

By learning only the additional classes, only the red
weight updates need to be computed instead of the green
weight updates in Fig. 4. It can significantly reduce the
computational cost when optimally implemented in hard-
ware. On the other hand, in the image classification task,
the output of the entire model is determined by the soft-
max of the output of the tail layer. Therefore, depending
on the balance with the not updated weights, the accu-
racy may be worse than when training from initial values
given by random numbers.

D. Back Propagation for Tail Layer Training

Neural networks, including CNNs, cannot make ap-
propriate inferences about the input unless the weights
have appropriate values, and the expected output and
the model output will not match. Therefore, it is nec-
essary to update the weights, one of which is the back
propagation method. Let y be the expected output and
ŷ be the model output, and let E be the error function
E = |y − ŷ|2.
The weights are changed to minimize E because E

should be adjusted to be zero and E ≥ 0 is always true in
order to make the model output the expected output.To
minimize E, the difference ∆w for modifying each weight
w is updated according to

∆w = −η
∂E

∂w
(3)

using an appropriate learning rate η.

Let zl−1
i be the input of the i-th neuron in the l − 1

layer and xl−1
i be its output. Also, let wl−1

i,j be the weight
from the i-th neuron in layer l − 1 to the j-th neuron in
layer l. When the activation function σ is

xl
j = σ(

∑
i

zl−1
i wl−1

i,j ) (4)

, then the right side of Eq.(3) is

−η
∂E

∂wl
i,j

= −η
∂E

∂xl+1
j

σ′(zl+1
j )xl

j (5)

.

In the tail layer, for ∂E

∂xl+1
j

in Eq.(5), when the number

of layers of the CNN is n, xn
j = ŷj . By E = |y − ŷ|2, it
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can calculated as

∆wl
i,j = −η

∂E

∂wl
i,j

(6)

= −η
∂E

∂xl+1
j

σ′(zl+1
j )xl

j (7)

= −η
∂|y − ŷ|2

∂ŷj
σ′(zl+1

j )xl
j (8)

= 2η(yj − ŷj)σ
′(zl+1

j )xl
j (9)

. This shows that only the tail layer can be trained.
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Fig. 5. Hardware Configuration of Tail Layer Training.
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E. Implemented Platforms

The hardware configuration for tail-layer training is
shown in Fig. 5, where models compiled from ResNet ex-
cept for the tail layer are computed on a DPU. On the
other hand, the tail layer for training is computed on the
CPU.

The model creation method is shown in Fig. 6. Except
for the tail layer of ResNet, it needs to be converted into
a format executable by DPU. xmodel files are generated
by compiling after quantization using Vitis AI and then
transferred to the board to be read. The system can be
used for the following purposes. The tail layer can be
loaded with weights trained in advance.

IV. Experiments and Discussions

A. Experimental Environment

Python 3.8.8, PyTorch 1.7.1, and Torchvision 0.8.2 were
used to train the model. The DPU was created using
Vitis-AI 2021.1 and implemented on an Ultra96-v2 board.

TABLE I
Classification accuracy of CIFAR10 using VGG16.

domain 8 classifications
Tail layer training of

all weights from random
Tail layer training with
fixed existing weights

existing method

ALL 91% 86% 83% 89%
plane 94% 71% 79% 92%
car 98% 84% 84% 93%
bird 86% 87% 89% 85%
cat 84% 83% 78% 88%
deer 93% 91% 75% 91%
dog 83% 86% 76% 88%
frog 98% 94% 95% 92%
horse 91% 92% 86% 93%
ship −− 98% 88% 97%
truck −− 83% 81% 92%

TABLE II
Classification accuracy of CIFAR10 using ResNet18.

domain 8 classifications
Tail layer training of

all weights from random
Tail layer training with
fixed existing weights

existing method

ALL 95% 94% 94% 95%
plane 98% 96% 91% 96%
car 99% 93% 95% 98%
bird 94% 93% 94% 93%
cat 90% 88% 90% 98%
deer 95% 94% 95% 96%
dog 92% 92% 93% 91%
frog 98% 98% 97% 97%
horse 99% 96% 97% 97%
ship −− 96% 94% 96%
truck −− 94% 94% 97%

B. Accuracy of Tail Layer Training Using CIFAR10

The results of the tail layer training using VGG16 are
shown in Table I. Eight classes of VGG16, excluding ship
and truck, were trained using the weights learned in Ima-
geNet as initial values, resulting in a 91% correct response
rate. Using this 8-class classification model as a base, we
trained only the tail layer from initial values given by
random numbers using all CIFAR10 images and obtained
an overall accuracy rate of 86%. When only the addi-
tional classes were trained without updating the weights
for the existing classes, an overall correct response rate
of 83% was obtained. On the other hand, VGG16, in
which the entire model was trained with CIFAR10, had
a correct response rate of 89%. Tail layer training shows
only three-point accuracy degradation compared to exist-
ing methods.
Similarly, the results of tail layer training using

ResNet18, ResNet50, and MobileNetV2 are shown in Ta-
ble II, Table III, and Table IV, respectively. These models
achieve recognition accuracies of 95% or better than ex-
isting methods. All weights in the tail layer are trained
from initial values given by random numbers, and the ex-

TABLE III
Classification accuracy of CIFAR10 using ResNet50.

domain 8 classifications
Tail layer training of

all weights from random
Tail layer training with
fixed existing weights

existing method

ALL 96% 96% 95% 96%
plane 99% 95% 94% 97%
car 99% 97% 97% 97%
bird 94% 96% 96% 95%
cat 93% 93% 92% 91%
deer 97% 98% 98% 97%
dog 94% 94% 94% 95%
frog 97% 97% 97% 99%
horse 98% 98% 98% 97%
ship −− 96% 95% 98%
truck −− 95% 93% 97%
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TABLE IV
Classification Accuracy of CIFAR10 Using MobileNetV2.

domain 8 classifications
Tail layer training of

all weights from random
Tail layer training with
fixed existing weights

existing method

ALL 95% 94% 93% 95%
plane 98% 93% 90% 97%
car 99% 94% 92% 97%
bird 94% 93% 95% 96%
cat 90% 89% 89% 89%
deer 96% 96% 96% 96%
dog 90% 92% 88% 90%
frog 98% 97% 97% 98%
horse 97% 96% 97% 96%
ship −− 95% 93% 96%
truck −− 91% 94% 97%

TABLE V
Classification accuracy of CIFAR10 when pretrains with

ResNet50 are used as is.

domain 8 classifications
Tail layer training of

all weights from random
Tail layer training with
fixed existing weights

existing method

ALL 85% 83% 83% 96%
plane 91% 79% 75% 97%
car 96% 89% 88% 97%
bird 76% 77% 75% 95%
cat 75% 75% 73% 91%
deer 83% 75% 86% 97%
dog 85% 84% 84% 95%
frog 90% 88% 90% 99%
horse 88% 86% 84% 97%
ship −− 91% 91% 98%
truck −− 89% 88% 97%

isting method was less than one percentage point. It indi-
cates that the higher the accuracy of the existing method,
the smaller the accuracy difference with the tail layer
training. Similarly, the difference in accuracy between
tail layer training, which learns from initial values given
by random numbers, and tail layer training with existing
weights fixed is also less than 1 point, and the accuracy
degradation is sufficiently small.
The results of the same tail layer training experiment

are shown in Table V. It decreases in accuracy for all
items compared to Table III, which was tested using the
same model and data set. It may suggest that when ex-
tracting features in layers other than the tail layer, the
training results from the existing domain are effective even
in the new domain in the additional training.

C. Accuracy of Tail Layer Training Using ImageNet

ResNet50 trained with 999 classes, excluding n15075141
(toilet tissue), which corresponds to the last label in Ima-
geNet, yielded a correct response rate of 74%. Using this
model as a base, we trained only the tail layer from initial
values given by random numbers using all images in Im-
ageNet. We obtained a correct overall rate of 75% (Fig.
7). On the other hand, the added classes only resulted in
a 32% correct response rate. When only the additional
classes were trained without updating the weights of the
existing classes, the overall correct answer rate was 74%,
while the correct answer rate for the added classes was
only 44% (Fig. 8). In both cases, the class with the highest
error rate was n03887697 (paper towel), which classified
24% when trained from initial values given by random
numbers and 12% when trained from additional classes
only.

Fig. 7. The Process of Tail Layer Training to Use Randomly
Determined Initial Value.

Fig. 8. The Process of Tail Layer Training with Training Only the
Additional Classes without Updating the Weights of the Existing
Classes.

D. Constraints of Tail Layer Training

Fig. 9 shows the learning process for the tail layer train-
ing with only the additional classes performed on VGG16
and CIFAR10 in section B. In addition to the ship and
truck being trained here, the accuracy of the plane and
car also changed. The 4096-dimensional vectors used as
input for the tail layer are converted to two dimensions us-
ing principal component analysis (PCA), and the results
are shown in Fig. 10. Here, PC1 on the horizontal axis
and PC2 on the vertical axis represent the first and sec-
ond principal components. It can be confirmed that car,
truck, ship, and plane are similar among the classes men-
tioned above. Therefore, it can be inferred that adding a
class similar to an existing class will affect the accuracy.
Therefore, when performing a multi-class classification on
the scale of ImageNet, such as in the Section C clause. In
almost all cases, existing classes are similar to the added
class, and the misclassification rate increases. However,
for a scale of CIFAR10, the number of existing classes
is small. The training accuracy of the added classes is
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Fig. 9. The Process of Tail Layer Training in which Only
Additional Classes Are Trained.

Fig. 10. Result of Compressing The Input to The Tail Layer to
Two Dimensions Using PCA.

expected to be equivalent to that of the existing classes.

E. DPU Modeling and Inference

The ResNet50 model trained with PyTorch using Vitis-
AI can be quantized and compiled for Ultra96-v2 to create
xmodel files. Note that VGG16 could not be placed on the
DPU because of its large size in this environment. The
tutorial provided on DPU on PYNQ[13] includes inference
using ResNet50, with a performance of 11.96 FPS. On the
other hand, the remainder of ResNet50, excluding the tail
fully connected layer, was inferred using DPUs. Only the
tail layer was inferred using a model that can be trained
with PyTorch, resulting in a performance of 11.42 FPS.
Although the tail fully connected layer is implemented
with PyTorch on a CPU, the inference speed is sufficient.

V. Conclusion

We trained only the tail layer on the CPU/DPU hybrid
system. Using a CNN accelerator allowed faster inference.
However, the almost weights were not updated. It sep-
arates the tail layer from the CNN accelerator while the

CPU is used for training, such as adding classes. However,
adding classes similar to existing classes leads to a limited
accuracy degradation. We showed that our CPU/DPU
hybrid system only had a few performance degradation
with a training functionality. Our scheme can be applied
to the existing SoC-FPGA-based CNN accelerator.
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