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Abstract—Intelligent robotics leverages deep learning to boost
collaboration between humans and devices. Robotic controllers
require a low-latency computation process for a real-time re-
sponse when facing dynamic situations. Also, in the meantime,
more controllers are designed with DNN-based reinforcement
learning, which may need more computation power. In this paper,
we use high-level synthesis to implement a DNN-based controller
on an FPGA. The FPGA is built with an ESP SoC (System-on-
Chip) platform, integrated with, and controlled through a host
computer. We demonstrated the complete end-to-end controller
system on a virtual robotic arm with 1041 times speedup
compared with a CPU-based software implementation.

I. INTRODUCTION

Artificial intelligence (AI)-related applications have
achieved massive success recently. Still, their high demands
for computing power make them challenging to deploy to
an environment that lacks of enough computing resources.
Meanwhile, the recent advancement of the humanoid robotic
arm inspires many researchers to combine deep neural
networks (DNNs) to perform human-like actions [1]–[3].
Therefore, DNN-based controllers for robotic applications
have been getting more popular [4], [5] because of their
flexibility and performance, as compared with the traditional
rule-based programming. For example, reinforcement
learning is used for a robotic to learn a particular task,
e.g., simultaneous localization and mapping (SLAM) [6]
by exploring the environments successively. As another
example, imitation learning [7] is applied to mimic human
behavior, e.g., operation skills. Both learning techniques
will be implemented with a specific DNN network (usually
LSTM/GRU-based [8] for generating a sequence of actions).
The DNN networks can be implemented directly with
CPU/GPU frameworks (Tensorflow or Pytorch). However,
operation latency is another constraint to be considered
for a robotic controller. A robotic controller has to collect
sensor data (such as image, object, sound, pressure, etc.)
from the environment to make a quick decision on the next
actions. The operation cycle of collecting, analyzing, and
decision-making needs to fit in a real-time limit. When we
use DNN-based learning, the latency requirement may not be
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easily solvable with CPU/GPU frameworks since they are not
optimized for latency and energy efficiency.

In this paper, we proposed to use high-level synthesis (HLS)
to implement the DNN network (designed with reinforcement
or imitation learning) on an FPGA to satisfy the latency
requirement of a robotic controller. The contributions of this
work can be summarized as follows:

• Our DNN accelerator was implemented on an open-
sourced Embedded Scalable Platform (ESP) [9]. With the
proposed scalable architecture, the area-latency trade-off
can be done precisely and rapidly using the high-level
synthesis. And then, the ESP SoC platform was integrated
with a 7-axis robotic arm controller to accelerate the DNN
computation process.

• We also improved the communication link (Extended
ESPLINK) between the host and the FPGA platform to
support the DNN accelerator. With the hardware/software
co-optimization, the speedup achieves 1041 times as
compared with the software approach.

• Finally, a full mechatronics system was operational to
demonstrate the real-time robotic arm control on a phys-
ical simulator, Webots [10]. The demonstration also jus-
tifies the completeness of our design platform.

II. THE SYSTEM ARCHITECTURE OF ROBOTIC ARM
CONTROL

Fig. 1 shows the system architecture of the DNN-based
accelerator for robotic arm control. The host executes the
main application and acts as a server for flow control. It
monitors the physical status of the robotic arm and controls
the DMA to transmit the data to and from the accelerator
via the interface. The interface protocol between the host and
accelerator is implemented on top of the Ethernet port. We
also present an improved interface design to support the real-
time robotic control. Our accelerator is based on the agile
ESP architecture [9], which is an open-source platform for
heterogeneous SoC design. The tile-based architecture consists
of modular CPU tile with RISC-V Ariane, memory tile, IO
tile, and accelerator tile, integrated by a scalable network-on-
chip (NoC). The companion methodology enables system-level
abstraction and an automated flow from software and hardware
co-development to full-system prototyping. For the specialized
application of robotic arm control, the DNN engine is modeled
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in SystemC and synthesized into RTL with high-level synthesis
(HLS) flow. The control parameters to the robotic arm, i.e.,
the seven motor angles, are fed back to the robotic arm. In
this prototyping, our accelerator is implemented in FPGA. The
Webots is used to simulate the mechanical robotic arm with
physical parameters such as mass, center of mass, velocity,
gravity, friction coefficients, etc.
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Fig. 1. The system architecture of robotic arm control.

III. THE PROPOSED ACCELERATOR DESIGN

A. Proximal Policy Optimization (PPO) Algorithm

Fig. 2 shows the training model of our reinforcement learn-
ing. The environment is implemented by Webots simulator to
simulate the physical behavior of the 7-axis humanoid arm.
Also, the environment provides the state and reward to the
agent. The agent is trained to produce the correspondent action
of the robot arm. Actor-critic deep reinforcement learning
(RL) with experience replay has drawn much attention from
researchers for continuous control problems [11] to optimize
the training reward. Among the existing deep RL techniques,
Proximal Policy Optimization (PPO) [12] algorithm is simpler
to implement, more general, with better sample complexity.
So, we adopted PPO’s actor-critic architecture as both actor
and critic are separate DNN models for controlling the robotic
arm to reach the goal destinations. The input state to the DNN
include the motor angles on the 7-axis robotic arm, both the
position and orientation of the robot palm, and the target desti-
nation (i.e., the input state is a 16-tuple). The output actions of
the DNN are the target rotation angles of the seven motors for
continuous arm control (i.e., the output action is a 7-tuple).
Both networks consist of three layers: 16 × 128 × 64 × 7
neurons for the actor, and 16× 128× 64× 1 neurons for the
critic, respectively. Besides, we use the hardtanh as the non-
linear activation function instead of the tanh to simplify the
hardware implementation.

The reward function can be defined as follows:

Reward =
√

S2 + T 2 + cos−1(
(S · T )√
S2 ×

√
T 2

), (1)

where S is the vector of the current position and T is the
vector of the destination for the robotic arm. The training
process begins with an initial arm position and a random target
position. Then, the DNN model tries to move the robotic arm
to approach the target point without exceeding the maximum
trial number during the training. The success rate can reach
100% in 33 epochs on average. Then, we also applied the
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Fig. 2. Reinforcement training model of robotic arm control with PPO.

post-training quantization from 64-bit float-point numbers to
32-bit fixed-point numbers to improve the hardware efficiency
with neglectable error rate.

B. Accelerator Architecture

As Fig. 3 shows, our accelerator consists of three main
blocks: Load, Compute, and Store. The Load block is respon-
sible for loading weights, biases and inputs (i.e., the motor
angles on the 7-axis robotic arm, both the position and orienta-
tion of the robot palm, and the target destination) from DRAM
to Private Local Memory (PLM) through the DMA (Direct
Memory Access) controller. It also checks the handshaking
flags to ensure data readiness. The Compute block performs
the DNN operations and stores the intermediate results and
final PPO outputs (i.e., the target rotation angles of the seven
motors) in the PLM. The number of processing elements (PEs)
in the Compute block is scalable (the figure shows eight PEs
in our prototyping). These PEs mainly perform the fixed-
point matrix multiplication. There is also a dedicated activation
module for the hardtanh function in this block. Finally, the
Store block writes the result and handshaking flags back into
DRAM to inform the host of the valid outputs.
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Fig. 3. The proposed accelerator design.

We designed our HLS-based accelerator and its flexible
handshaking protocol with constrained resources. The HLS
utilizes SystemC, a C++-based hardware description language,
to describe the hardware accelerator and its synthesis con-
straints. Fig. 4 lists the core segment of tiling description in
SystemC for a fully connected layer of M input neurons and
N output neurons as shown in Fig. 5. The first for-loop tiles the
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dimension of N by the number of PEs. The data movement
of all inputs, weights, and biases from DRAM to PLM is
also performed inside this loop. Similarly, the second for-loop
partitions the dimension of M into tiles. Finally, the third for-
loop loads the input features and filter weights from the PLM
and executes multiplications and accumulations (MAC). The
directive of HLS UNROOL LOOP(ON) is to control the HLS
process of Cadence Stratus to unroll this loop. After the inner
two loops are completed, the output activations are stored back
to the PLM. The two-level tiling also enables the optimization
between the PLM size and data reusability.

for (int n = 0; n < N; n += PE_num){
load_from_DRAM_to_PLM();
int acc[PE_num] = {0};
for (int m = 0; m < M; m++){

for (int i = 0; i < PE_num; i++){
HLS_UNROLL_LOOP(ON); // Unroll parallel PEs
int ifeature = (PLM_ifeature[m * PE_num + i]);
int weight = (PLM_weight[m * PE_num + i]);
acc[i] += ifeature * weight;

}
for (int i = 0; i < PE_num; i++)

PLM_result[n + i] = acc[i];
}

}

Fig. 4. SystemC description of DNN engine.

M N

Fig. 5. Fully connected layer in deep neural network.

Due to the flexibility of HLS design, we configured three
different PE numbers: 4, 8, and 16 in our accelerator design,
and showed the results in Table I. We listed the latency
of Load, Compute and Store in rows 2-4. Except for Store
operations, both Load and Compute latency (and the total
latency) decrease with more PEs added to the accelerator.
However, the decreased rate does not correspond to the number
of PEs, i.e., it is sub-linear. This is due to the fact that there
is a limited number of ports of the PLM (private SRAM). To
further reduce latency with more PEs, we need to balance the
PLM bandwidth of each PE group carefully. Here we set the
PLM port number to be 8 for our experiments.

The last row of Table I compares the normalized AT 2,
where A is the number LUT on FPGA and T is the total
latency (also refer to Fig. 6). In this prototyping, one spatial

TABLE I
LATENCY (CYCLES), AREA (LUT), AND AT 2 COMPARISON OF DIFFERENT

PE NUMBERS IN RTL SIMULATION

# PEs 4 8 16
Load 24,489 20,481 18,477
Compute 16,608 12,735 11,043
Store 53 53 53
Total Latency 41,150 33,269 29,573
Area (Total LUT) 12,903 19,439 32,581
Normalized AT 2 1.02 1 13.24

tile consists of eight PEs (i.e., eight adders and eight multipli-
ers in parallel) as the configuration has the optimized AT 2. To
maximize the flexibility of the accelerator, the layer size and
number of layers are configurable in the accelerator module,
allowing users to adjust for various applications in the software
on the RISC-V CPU. With proper hardware support, different
non-linear activation functions or extended neural networks
are also possible.
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Fig. 6. The comparison of area, latency, and AT 2 for different number of
PEs.

The SystemC design is synthesized into the RTL descrip-
tion by Cadence Stratus. Then the hardware accelerator is
implemented on the FPGA by using the design flow of Xilinx
Vivado. Finally, the integrated system is operated using the
ESP software stack to interact with the Webots. We also
implement the hardware performance counter in SystemC
to profile the operating cycles of the accelerator. Table II
compares the latency of a single robot action in cycles among
SystemC simulation of the accelerator, RTL simulation of the
accelerator, RTL simulation of the system, and the FPGA
measurement of the system. The result shows that the SystemC
simulation is too optimistic without considering the realistic
latency of external DRAM access. However, SystemC simula-
tion provides a fast evaluation in the early design stage. Once
entering the RTL stage, our hardware counter can provide a
consistent and precise performance indicator to monitor and
evaluate the entire acceleration system.

IV. THE DATA COMMUNICATION

The ESP platform supported two types of data commu-
nication, Secure Copy (SCP) and ESPLINK [13]. The SCP
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TABLE II
COMPARISON OF THE PERFORMANCE COUNTER (CYCLES)

Method Load Compute Store Total
ACC SystemC Simulation 20,481 203 53 20,534
ACC RTL Simulation 20,481 12,735 53 33,269
System RTL Simulation 21,956 12,735 53 34,744
System FPGA Measurement 24,439 12,745 53 37,227

is a Linux-based method based on SSH; ESPLINK is a
customized protocol on top of the Ethernet port, supporting the
data communication for both the bare-metal and Linux-based
applications. The SCP is mainly to establish a secure data
transmission, which takes about a second to establish the link.
A large chunk of data with security requirements is suitable
for applying the SCP. On the other hand, ESPLINK can be
used for transferring many data blocks of small size.

A. Extended ESPLINK

Replacing the SCP with the ESPLINK improves the system
latency significantly. However, there is still room for further
advancement. Fig. 7(a) illustrates the ESPLINK communica-
tion with the FPGA. The host sends the request to the FPGA to
establish the communication link. After the acknowledgment,
the data is transmitted. Then, the second acknowledgment is
used to close the communication. From our experience, the
returning path from the FPGA usually requires a wait time
of 40× longer than that of sending the data to the FPGA.
Considering that the communication between the host and
accelerator is local and well confined, we can further simplify
the communication when there is only a single host in the
system. As shown in Fig. 7(b), the data with the request can be
sent by the host directly; the result with the acknowledgment
can be returned. The communication can be done with single
handshaking.

HOST FPGA
Request Sequence

Send Data

Return Seq
uence

Return Ack

HOST FPGA
Send Data

Return Ack
and Data

(a) (b)

Fig. 7. ESPLINK handshaking mechanism with the FPGA: (a) original
protocol; (b) extended version, with the dashed line indicates that the return
only happens when the host requests to get data from the FPGA.

B. Improved Host-Accelerator Handshaking

The data movement from the host to the FPGA requires
the host to write the inputs into the DRAM tile and raise the
handshaking flag to indicate the data is ready. Similarly, once

the FPGA updates the output to the memory, it also updates
the flag status. So the host can be aware of the readiness of
the result. If the data and flag locate apart, the transmission
needs separate packets to compete, resulting in a significant
latency overhead for the additional packet. Thus, we arrange
the handshaking flag in between the input data and output data,
as shown in Fig. 8. The continuous memory footprint allows
a single packet to efficiently move data in and out.

Flag OutputsInputs

0x2A88 0x2A98 0x2A8A 0x2AA2

Fig. 8. Memory footprint for handshaking.

C. Performance Evaluation

Table. III compares the different data communication
schemes, including the SCP, ESPLINK, and Extended ES-
PLINK. The data transfer of 1 Kbytes is evaluated with
different block sizes of transmission, i.e., 16 bytes, 64 bytes,
256 bytes, and 1024 bytes. The total transfer time of the
SCP decreases with the transmission block size increases due
to the large overhead of establishing the secure connection.
The ESPLINK performs a lot faster. However, the protocol
overhead becomes dominant with the block size larger than
256 bytes. By contrast, the proposed Extended ESPLINK gains
consistent improvement as the packet size grows. For the block
size of 1024 bytes, the data bandwidth achieves 0.01 seconds
per 1024 bytes, which is equivalent to 100 Kbytes per second.

TABLE III
COMPARISON OF LATENCY (SECONDS) FOR DATA OF 1024 BYTES

Block Size SCP ESPLINK Extended ESPLINK
16 Bytes/Block 87.142 0.261 0.096
64 Bytes/Block 23.374 0.064 0.026

256 Bytes/Block 5.529 0.032 0.014
1024 Bytes/Block 1.431 0.040 0.010

V. EXPERIMENT RESULT

In the experiments, we measure the overall performance of
the system. The latency of the system includes the Extended
ESPLINK communication handshaking and computation time
by the HLS-based accelerator for computing Proximal Policy
Optimization (PPO). We also implement the PPO algorithm
as a C program for comparison. Both the ESP platform and
the accelerator are implemented on a Xilinx-VCU118 FPGA
evaluation board. Also, the C program is run on a RISC-
V Ariane core [14], a 6-stage 64-bit in-order RV64IMAC
processor. For the test cases, we use Webots to generate
500 robotic arm configurations. The whole setup, including
the FPGA board and host, is shown in Fig. 9. Note that
the proposed acceleration system interacts with the humanoid
robotic arm simulator in real-time. Moreover, our DNN-based
acceleration system can also engage with the realistic robotic
arm flawlessly thanks to the consistency of the interface.
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Table. IV lists the measured average latency considering
two computation modules (i.e., RISC-V CPU and Accelerator)
and three communication methods (i.e., SCP, ESPLINK, and
Extended ESPLINK). Since the SCP is the slowest commu-
nication method, its latency dominates overall performance.
There is no difference in average iteration/s for both the
CPU and Accelerator with the SCP. When replacing with
the ESPLINK, we improve the throughput from 33.1 to 42.4
iteration/s with the accelerator. And finally, with the Extended
ESPLINK, we can compute the PPO at 353.9 iteration/s, which
justifies the efficiency of the accelerator design. The HLS-
based DNN accelerator is over four times faster as compared
with the CPU-based approach on the FPGA prototyping (from
85.3 iterations/sec to 353.9 iterations/sec). Together with the
proposed extended ESPLINK, the speedup achieves 1041×
over the baseline approach. The analysis also shows that
the system-level evaluation helps identify the performance
bottleneck and leads to efficient design optimization.

Robotic Arm in Webots

HostESP + DNN
Accelerator

Xilinx VCU118 FPGA Board

Fig. 9. System integration of FPGA and robotic arm in Webots.

TABLE IV
COMPARISON OF THE OVERALL PERFORMANCE

Module Method Iterations/sec Speedup

RISC-V CPU
SCP 0.34 (Baseline) —

ESPLINK 33.1 97.4×
Extended ESPLINK 85.3 250.9×

Accelerator
SCP 0.35 1.0×

ESPLINK 42.4 124.7×
Extended ESPLINK 353.9 1040.9×

Currently, we are also working on an extended robotic arm
controller that adopts the conditional variational autoencoder
(CVAE) with a much improved success rate for obstacle
avoidance. The accelerator engine will implement recurrent
neural network (RNN) of CVAE by using the HLS flow,
and again integrate into our design platform to showcase the
effectiveness.

VI. CONCLUSION

This paper demonstrates a flexible platform to design
application-specific DNN accelerators for an intelligent robotic
controller. Leveraging the modularized design of ESP, we can
plug in different accelerators to target the performance for
diverse applications. By the proposed Extended ESPLINK and
HLS-based accelerator, we show that the average throughput
of a PPO algorithm can achieve 353.9 iteration/s, which
is 1041× faster compared with the baseline of CPU-based
software and SCP communication. We also present a mecha-
tronics system, integrating the real-time DNN-based robotic
arm control with a cyber-physical simulator to evaluate the
effectiveness of the proposed software/hardware acceleration
architecture. Our architecture not only allows the designers
to build up a rapid FPGA prototyping but also enables a
systematic SoC design methodology for DNN acceleration on
a cyber-physical system.
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