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Abstract— The paper proposes a trotter-oriented
parallel emulation method of quantum Monte Carlo
method for FPGA. Random spin toggles in trotters
are manipulated in parallel. By using the Mersenne
twistor method to compute random numbers and by
sharing spin information of adjacent trotters, the pro-
posed parallel processing hardware can obtain the
same accuracy as in the case of serial processing and
gains more than 20 times speed-up compared with the
serial hardware on 32 trotter case.

I. INTRODUCTION

Recently, the development of new computing devices
and mechanisms has become active worldwide because
the forthcoming end of the process is shrinking. Espe-
cially new computation mechanisms for specialized prob-
lems capture our attention. Quantum annealing is one
of such new computation methods to solve combinatorial
optimization problems [1]. The method uses the proper-
ties of quantum spins where spin changes their direction
independently to minimize the total energy depending on
the correlation and the self energy of spins. The property
can be used to parallelize the annealing process [2].

Combinatorial optimization problems are common in
daily life, such as the determination of substantial quan-
tity in chemistry, delivery planning [3] and job scheduling
in companies [4], [5]. Quantum annealing can be used to
solve such problems in a short time [6].

Quantum annealing can be physically implemented
using quantum spins (quantum bits) in superconduct-
ing chips working under near absolute zero temperature.
Physical quantum annealers with the cooling unit are
large and expensive and it is rather hard to implement
a large number of spins. On the other hand, the simula-
tion of quantum annealing process called Simulated Quan-
tum Annealing (SQA) has been studied for executing on
conventional CPU or GPU [7], [8]. SQA can manage a
large number of spins for solving a variety of combinato-
rial problems [9]. Quantum Monte Carlo is a widely used
SQA method, where spins are randomly and iteratively
toggled to minimize the total energy of correlated spins.
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When a randomly selected spin is toggled, the energy dif-
ference is computed by the toggle and judged based on the
difference in whether the toggle is accepted. Spin toggles
are executed in series to manage the correlation between
spins.

Hardware emulation of SQA has also studied on con-
ventional chip or FPGA [9], [10], [11]. By parallelizing
spin toggles, we can accelerate the Quantum Monte Carlo,
but the correlation between spins should be carefully man-
aged. Necessary hardware resources for parallel opera-
tions are another issue, and previous proposals [9], [10],
[11] do not work efficiently because of the resource limi-
tation of FPGA. These previous works [9], [10], [11] have
focused on increasing the number of parallels and have
used full parallel processing. Therefore, they may not be
able to solve large problems due to hardware resources.

The paper proposes a parallelization method that takes
the hardware resources of FPGA into account. In Quan-
tum Monte Carlo, several spin sets called trotters are used
to simulate the quantum effect, and the correlation be-
tween spins in different trotters is very limited compared
with that of spins in the same trotter. In the proposed
method, toggles of spins in different trotters are paral-
lelized by caring for the limited correlation. An opera-
tional unit is designed to manage spin toggles of several
trotters and the number of parallel operational units is de-
cided to depend on the usable FPGA resource. By using
the Mersenne twistor method to compute random num-
bers and by incorporating information about neighboring
trotters, the proposed parallel processing method can ob-
tain the same accuracy as in the case of serial process-
ing. This method makes it possible to adjust the number
of parallels according to the hardware resources and the
problem scale.

The rest of the paper is organized as follows: Chapter
2 describes the emulation of SQA, Chapter 3 describes
the proposed inter-trotter parallel processing method, and
Chapter 4 evaluates and discusses the processing time of
the proposed parallel processing method. Chapter 5 is a
conclusion.
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II. EMULATION OF SIMULATED QUANTUM
ANNEALING

This chapter shows an emulation method of simulated
quantum annealing on the Ising model using Quantum
Monte Carlo method. We represent a mapping of the
traveling salesman problem to the Ising model.

A. Ising Model

The Ising model is to describe the spin behavior of mag-
netic materials in statistical mechanics [7]. It consists of a
set of spins that take two states: upward and downward.
The entire spins are affected by an external magnetic field,
and each spin interacts with the other. A spin can be rep-
resented by a spin variable s;, which takes the value of 41
for upward state and -1 for downward state. The inter-
action coefficient betweens; and s; is denoted by.J; jand
the self-energy due to the magnetic field on the spin s;
is denoted by h;. With these symbols, The energy of an
n spin Ising model with a transverse field is expressed by

Eq.(1)

n
H=-— Z JijSiSj — thsl (1)

i<j i=1
In actual magnetic materials, the spin direction changes to
minimize the energy function H. Fig.1 shows an example
of a 9-spin Ising model. QUBO (Quadratic Unconstrained
Binary Optimization)is another optimization problem on
binary variables, where the variables in QUBO take the
binary value 1 or 0 and the quadratic expression of the
variables represents the cost function to be minimized.
The spin variable s; in the Ising model and the binary
variable z; in QUBO can be converted by EQ.(2), and

QUBO is equivalent to the Ising model.

(si+1)

Ti = B (2)
The choice of the Ising model and QUBO is up to us
and an easier way can be used to formulate a combina-
torial problem. From the point of view of the computa-
tion, QUBO may reduce the number of operations because
product terms in a quadratic expression become 0 when
a binary variable is 0.

B. Simultated Quantum Annealing

In the section, SQA based on a Quantum Monte Carlo
method (QMC) is introduced. In QMC, the spin state
with minimum energy is searched from an initial spin state
by toggling a randomly selected spin one by one. In de-
tail, a spin is randomly selected, the energy difference is
computed when toggling the spin, and then its toggle is
judged to be accepted or not. The spin toggle steps need
a large number of iterations.

QMC uses random numbers for the initial spin state

Fig. 1. Two-dimensional Ising model.

generation and the spin toggling steps. There are several
ways to generate random numbers such as Linear congru-
ential generators and the Mersenne-Twister method. In
our QMC, we use Mersenne-Twister method. In addi-
tion to thermal fluctuations similar to one in Simulated
Annealing, quantum fluctuations are used to search for
the optimal solution. By using these fluctuations, QMC
prevents falling into the locally optimal solution. In ad-
dition, we deal with multiple spin sets called "trotters”.
Trotters are multiple replicas of quantum-specific states.
The entire system is searched from m different states.
Between neighboring trotters, interaction occurs specified
by the interaction coefficient corresponding to the trans-
verse magnetic field [7]. In quantum annealing, a term for
the transverse magnetic field between trotters is added to
Eq(1). The Hamiltonian of the Ising model in QMC is
expressed as follows [2].

H= —% Z(Z JijSk,iSk,j — Z hisk,qi)

k=1 i<j i=1 3)
—logeoth("=) 3" spisiirs
55100¢0 (m )k:1 2 Sk,iSk+1,

m is number of trotters, s;; is a spin ¢ in trotter k.
When mapping Ising models with SQA, it is necessary to
consider trotters that represent multiple quantum states.
Therefore, we treat a two-dimensional array of trotter
numbers and spin numbers. We show the spin array with
Trotter in Fig. 3. The first part corresponds to the mean
of each trotter’s energy. The second part corresponds to
the correlation of trotters. The trotter index is denoted
by k, the temperature is denoted 8 and the strength of
the transverse magnetic field is denoted by T

When T' is large, the interaction between trotters is
small and the spins search for the optimal solution with-
out interference between trotters. As I' is gradually de-
creased, the interaction between trotters becomes larger
and the interference increases. As can be seen from equa-
tion (2), % becomes smaller and converges to the optimal
solution. Fig.2 shows an image of the search in quantum
annealing.

We show the procedure of QMC.
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Fig. 3. Spin array introducing trotters .

1. Based on the input data, initial spins are gener-
ated for all trotters.

2. Initialize various variables such asf and I'.

3. A trotter and a spin in the trotter are randomly
selected and toggled, and the energy changes
AH are calculated before and after the toggling.

4. If AH is minus, spin toggling is accepted. Even
when AH is plus, spin toggling is accepted based
on appropriate transition probabilities.

5. Repeat steps 3. to 4. a specified number of times
(inner loop).

6. Multiply the transverse magnetic field by 0.99.

7. Repeat steps 3. to 6. a specified number of times
(outer loop).

8. Select the trotter with the minimum energy H as
the optimal Ising model.

9. Transform the Ising model selected in 8. to the
state corresponding to the combinatorial opti-
mization problem.

/

QMC consists of two loops, 5. and 7., which are called
the inner and outer loops.

C. Mapping of the Traveling Salesman Problem

To check our proposed parallelization method, we
use the Traveling Salesman Problem. The TSP is the
problem of finding the route with the shortest total dis-

tance among all routes visiting all cities only once, un-
der a given distance between each city. When modeling
the N-city traveling salesman problem, prepare an array
with N2 spins of N rows and N columns. The rows indi-
cate "how many cities to visit” and the columns indicate
”which cities to visit”. Thus, the element in the ith row
and jth column of the array represents ”visit the city j at
time 4 or not”. The distance d;; jo between cities j1 and
j2 is included in the total distance if j1 is visited at time
1 and j2 is visited at time i+1. For representing the total
distance by the multiplication of variables, binary vari-
ables are suitable and QUBO is used. The total distance
is the sum of djl,j2 X SixN+j1 X S(i+1)xN+4j2-

III. PARALLEL PROCESSING

In QMC, the calculation of the energy difference for
toggling spins is repeated about 10? times. The repetition
needs a lot of time on a computer and its acceleration is
required. We introduce a parallel algorithm of QMC for
FPGA. Spin toggles in QMC are parallelized with car-
ing about the correlation between spins. If two correlated
spins are toggled at the same time, the correlation should
be cared for when computing the energy difference by the
toggles. FPGA is a good platform to implement paral-
lel processing units but its resource limitation should be
considered.

In this section, we describe the interdependencies in
SQA and then describe a parallel processing method that
we can change the number of parallelisms depending on
hardware resources in the design phase.

A. Inter Dependencies in Quantum Annealing

When the number of Trotter is m and the number of
spins of the traveling salesman problem isn, the spin ar-
ray of the entire Ising model is m x n. In QMC, there are
complex interdependencies. So, it is necessary for imple-
menting parallel processing to consider them. We show
the image of the dependencies in Fig. 4. As an exam-
ple, suppose we make a toggle decision for spin(i) spin at
trotter number m. As a condition for judgment, we use
the energy change A H before and after toggling the spin.
When calculating AH, from the first entry of 3, we need
information on all spins of trotter number k. From the
second entry, we also need information on spin(i) of the
adjacent trotters with trotter numbers k£ — 1 and %k + 1.
Therefore, if multiple tasks read and write spin informa-
tion from shared memory at the same time, there is a
possibility of information discrepancies.

B. Parallel Processing Architecture

This section describes the proposed parallel processing
method of trotters considering interdependencies.

The set of spins is arranged as shown in Fig. 3. To pro-
cess spin toggles in different trotters in parallel, we divide
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the spin array into trotter rows according to the number
of parallelisms. When the number of trotters is m and the
number of parallelisms is P, then the number of parallels
P is 1 < P < m. Each processing unit randomly selects
one spin to be toggled, and P processing units are con-
sidered. They perform a pipeline processing of the toggle
decision for the selected spin to reduce processing time.
Parallel units might select the correlated spins in different
trotters. At present, the energy differences of the selected
spins are computed using the current state and do not
care about the effect of the toggle. However the selection
of correlated spins is very rare, and almost the same op-
timization results can be obtained by this method. When
calculating A H, processing units add or subtract the cor-
relation coefficient between the correlated spins according
to the value of the spin variable in the same trotter. Pro-
cessing units also need the spin information of the adja-
cent trotters. However, if the spins located in the rows
at both ends of them are selected as the toggle targets,
they contain only spin information in at most one adja-
cent trotter, resulting in insufficient data references. To
solve this problem, we add a spin dedicated to adjacent
spin information at the end within each processing unit.
If need adjacent spin information during spin selection,
they obtain the spin data from the adjacent processing
unit and store it there. By referring to the information

there, they can calculate accurate AH.

As an example, the image of processing the entire spin
array in 2 parallel when the number of trotters is 16 and
the number of spins is 32 is shown in Fig.5. One process-
ing unit contains spins with trotter numbers 1-8; the other
contains spins with trotter numbers 9-16. If we want to
find AH when ag s is toggled, the spin states information
of a7 and ago are needed for calculating. Since a =g o
is necessary, that is stored in ag 33, in advance. By refer-
ring to the spin information of ag 33 instead of ag o, it is
possible to process without any difference in information
among the processing units.

Next, we show a time chart of the execution in Fig.6.
Each processing unit randomly selects a trotter and a spin
and shares the information with neighboring processing
units as needed. After all the processing in the loop is
finished, the energy is calculated for each trotter to find
the minimum spin state.

IV. IMPLEMENTATION AND EVALUATION

In this section, we describe the program implemented
on FPGA and evaluate the processing time.

A. FPGA Implementation

For the FPGA implementation, the functions were de-
scribed in C and converted to the hardware description
language Verilog-HDL by high-level synthesis using Xil-
inx’s Vitis HLS. For random number generation, we used
the Mersenne-Twister method. We also tried the lin-
ear congruence method, but the remainder of the ran-
dom number generated by the linear congruence method,
when divided by an even number, was likely to alternate
between even and odd numbers, resulting in a loss of ac-
curacy during parallel execution.

For the evaluation, we used a Xilinx Alveo U250 FPGA
board, which has only PL (Programmable Logic) and can
exchange data with the CPU of the host PC. As an en-
vironment for running the emulator on the FPGA, we
used PYNQ (Python for Zynq) running on the Jupyter
notebook. Fig.7 shows the overall architecture of the em-
ulator. The host computer and FPGA are connected by
a PCle bus, and the input data are stored in the global
memory of the FPGA board. The kernel store the spin
data in local memory and the PE contains adders and
comparators for adding energies between spins and com-
paring them with random numbers. Each kernel runs in
parallel. Single-precision floating-point kernels are used
for the interaction coefficients between spins, and double-
precision floating-point kernels are used for the energy
difference calculations.

B. Evaluation

We prepared a 32 City (1024 spin), 64 City (4096 spins),
and 96 City (9216 spins) TSP and measured the FPGA re-
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TABLE 1
PROCESSING TIME AND RESOURCE CONSUMPTION AND ITS RATIO AT EACH NUMBER OF PARALLELISM.

| Instance Size | Trotters | Parallel [ Timels] | BRAM | DSP4RE | FF ‘ LUT ‘
32 City 1 207.84 123(2%) 135(1%) | 13651(70%) | 23633(1%)
| 024spin 2 107.48 119(2%) 176(1%) | 17920(0%) | 31568(1%)
2 1 54.46 199(3%) 268(2%) | 26280(0%) | 44658(2%)
8 20.43 303(5%) 152(3%) | 42976(1%) | 70866(4%)
16 17.68 503(9%) 820(6%) | 76068(2%) | 123496(7%)
32 12.17 871(16%) 1556(12%) | 141555(4%) | 213613(12%)
64 City 1 279.80 413(7%) 135(1%) | 13750("0%) | 23778(1%)
v 2 143.67 194(9%) 176(1%) | 18066( 0%) | 31714(1%)
- 1 T6.11 656(12%) 268(2%) | 26528 0%() | 44834(2%)
8 217 980(18%) 152(3%) | 43428(1%) | 70990(4%)
16 25.20 1620(30%) 820(6%) | 77092(2%) 123676(7%)
32 17.24 2916(54%) 1556(12%) | 142875(4%) | 214051(12%)
96 City 1 513.92 911(16%) 146(1%) | 16163(°0%) | 25385(1%)
9126spin 2 276.41 1091(20%) 198(1%) | 21078(°0%) | 34021(1%)
32 1 159.12 1149(26%) 206(2%) | 30386(0%) | 48021(2%)
8 100.45 2169(40%) 492(4%) | 48995(1%) 76012(4%)
16 71.16 3601(66%) 88A(7%) | 85800(2%) | 129720(7%)
32 39.25 | 1423(26%)/URAM 96(7%) | 1567(12%) | 179356(5%) | 1316760(76%)
S ansiion to BRAM for storing input data because of the limited
Unitl 5 i [ Caluculate AH ‘ ‘ Caluculate AH ‘ ) Eo resources Of BRAM
itz IE oot ] otwodete 1] : 232 Fig.8 shows the ratio of processing times (hereafter
© |gs — 2 EiE referred to as "ratio”) when the number of parallels is
UnitP § z | Caluculate aH \ [ Caluculate aH | § ‘ gie changed from one to another. We calculated the ratio us-
Choice spin?” Toagle o — ing %’ where t,, is the processing time at a parallel num-

Fig. 6. Parallel Processing Time Chart.
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Fig. 7. Emulator architecture.

sources and processing time. In the evaluation, the num-
ber of trotters was fixed at 32, and the number of parallels
varied from 1, 2, 4, 8, 16, and 32. To compare process-
ing speeds between parallel numbers, we set the operat-
ing frequency for each parallel number to a constant 155
MHz. Tab.I shows the processing time and percentage
of FPGA resources used for different numbers of paral-
lelism and problem scales. We refer to serial processing
without parallel processing as ”one parallel”. In Problem
Scale 96 City, we used LUTRAM and URAM in addition

ber n. As can be seen from Fig.8, when the problem scale
is 32 City, 32-parallel achieves up to 17.08 times faster
than 1-parallel. In this parallel method, the growth of the
ratio to one parallel slowed down as the number of par-
allels increased. The emulator reads the self-energy and
interaction coefficient from the input data when making
the spin toggle decision. However, the amount of data
read from the input data varies depending on the spin
selected. In addition, to prevent differences in spin in-
formation among processing units, the proposed method
shares data every time all processing units complete one
spin toggle decision. Due to these factors, we believe that
the increase in the number of data parallels has increased
the waiting time until all processing units are completed,
resulting in a longer overall processing time. Furthermore,
this feature became more pronounced as the problem scale
increased. We believe that this is because the larger the
problem scale, the larger the difference in the amount of
data read from the input data due to the choice of spins.

Tab.IT compares the processing time of this implemen-
tation with 32 parallelisms on FPGA (16 parallelisms
in 96 cities) and CPU. The CPU is an Intel i9-7900X
CPU@3.30GHz with 128 GB of main memory. Tab.Il
shows that when the problem scale is 64 City, the FPGA
implementation is 2.80 times faster than The CPU. Then,
by incorporating random number calculations based on
the Mersenne-Twister method and information on neigh-
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TABLE II
PRrROCESSING TIME ON CPU AND FPGA.
Timels]
Instance Size | CPU(3.3GHz) | FPGA(155MHz)
32 City 29.03 12.17
64 City 48.34 17.24
96 City 80.66 39.25

boring trotters into the emulator, the interdependencies
among spins are overcome, and parallel processing is per-
formed according to the hardware resources.

In this implementation, 32-parallel achieved a speedup
of up to 17.08 times faster than 1-parallel. The FPGA
implementation achieved a speedup of up to 2.80 times
faster than the CPU. However, as the number of parallels
increased, the latency to complete all processing units in-
creased, and the increase in the ratio to one parallel slowed
down as the number of parallels increased.

We believe that this method can be applied to a va-
riety of problems because it employs trotter partitioning
for parallel processing. Future work is needed to incor-
porate parallel processing methods that use fewer BRAM
resources.

V. CONCLUSION

This paper proposes a new parallel processing method
of Simulated Quantum Annealing using Quantum Monte
Carlo. The proposed method divides trotters into P pro-
cessing units and each processing unit selects and com-
putes energy difference when the spin is toggled. The
correlation between trotters in different processing units
is considered by synchronizing the necessary information.
By using the Mersenne-Twister method for random num-
ber generation, the quality is almost the same as serial
processing. The proposed method can set the parallelism
considering the hardware resource of FPGA. The pro-
posed method is implemented on FPGA and gains more
than 20 times speed-up compared with a serial execution
of hardware on 32 trotter case. The hardware is about 2
times faster compared with a serial software execution on
3.3 GHz CPU.
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