

Development of Diagnosis-based Hardware Trojan Tolerate System

Abstract – Hardware Trojan threats caused by adversaries have
become one of serious issues. It has been recognized that it is
significantly difficult to detect all the hardware Trojans in field.
In this paper, a diagnosis-based hardware Trojan tolerate system
with deep learning scheme is introduced. Several collection
methods of dynamic information in order to judge whether a
target behavior is normal or abnormal are explained and some
evaluation results are shown.

I. Introduction
With the advance of VLSI fabrication technology, the

number of transistors in a VLSI chip has been significantly
increased. As a result, wide variety of multi-processor system-
on-a-chip (MPSoCs) which integrate multiple processor cores,
digital signal processing cores, memory cores, and various
intellectual processor (IP) cores in a chip can be developed and
commercially used. When an MPSoC is developed, designers
may use the third party IPs and outsourcing developers in order
to decrease turn-around-time to the market. In addition, fabless
companies which do not have their own manufacturing
facilities are increasing. Consequently, hardware Trojan
threats caused by adversaries and untrusted foundries have
become one of the serious issues [1,2].

Hardware Trojan means a malicious modification of the
target integrated circuit. Hardware Trojan insertions can be
arbitrarily adopted by adversaries at any design phase. Several
detection and counter methods have been published and
developed [2]. However, it has been recognized that it is
significantly difficult to detect all the hardware Trojan threats
since the relationship between the correct designers and the
adversaries is similar to a cat-and-mouse game. We think that
one of effective counter methods is a heuristic method using
several hardware diagnosis information, software log
information, and side channel information based on a deep
learning scheme. In this paper, we propose a diagnosis-based
hardware Trojan tolerate system based on the deep learning for
certain configuration machines. By applying this method to
computers with various machines, we will also explain the
hardware Trojan tolerate system developed on machines with
various configurations, and several collection methods of
learning data we developed are also explained and several
evaluation results are shown.

II. Hardware diagnosis information
Recently, several diagnostic information of a processor chip

through a diagnosis tool provided by the processor vendor can
be obtained [3]. Among the diagnostic information, static
information makes no sense to detect an abnormal dynamic
behavior. Thus, it is first needed to decide whether the
diagnostic information is dynamic or static. The Intel
Processor Diagnostic Tool (Intel PDT) is one of these
diagnosis software which have the following functions and
provide their results;

• Verifying processor core functions
• Confirming brand ID
• Checking the operating frequency
• Running load tests
• Testing processor functionality
In this research, the following two servers are used for

evaluation with the Intel PDT in order to simply decide the
dynamic information by comparing their results in which the
obtained values due to their structure differences are omitted.

1. Processor: Intel® Xeon® W-2123, Memory: 32GB
2. Processor: Intel® CoreTM i7-7700K, Memory: 16GB

As a result, it is recognized that the following items are
different between the above two servers.
• Cache size
• Memory size
• Existence and type of modules and EISA (Extended

instruction set architecture)
• Expected frequency
• Measured frequency
• Prime number generation test
• FLOPS test
Second, we use the WinSAT which is a standard evaluation

tool as a changeable load in order to decide whether the above
items are dynamic or static. Consequently, it is confirmed that
the following three items are dynamically changed according
to the applied load.
• Measured frequency
• Prime number generation test
• FLOPS test

However, it is also confirmed that the Intel PDT requires a long
time to get a set of the above items. Thus, in this research, we
develop in-house tools in order to obtain almost the same
information.

It is needed to collect a large number and wide variety of
normal data for machine learning in order to detect an
abnormal behavior. In a Linux environment which includes
WSL (Windows Subsystem for Linux), it is known that “sar”
command can be used to get the values of cumulative activity
counters in the operating system. Thus, we try to use the
command to obtain the dynamic information. Several OS
information files such as “/proc/cpuinfo” and
“/proc/meminfo” are also referred as static and dynamic
information of the current status. The above two test programs
are also developed. The prime number generation test
measures time that takes to generate up to 1000 prime numbers.
The FLOPS test measures the number of floating-point
operations performed per second. Each program is
independently launched and the target values are obtained. The
interval time of the consecutive launch of each program is
specified as 60 seconds. Note that there are two methods to
keep the program running at a regular time as follows;

Takuro Kasai
Hirosaki University

h21ms404@hirosaki-u.ac.jp

Masashi Imai
Hirosaki University

miyabi@hirosaki-u.ac.jp

SASIMI 2022 ProceedingsC-5

- 196 -

• Use “sleep” and loop
• Use crontab or task scheduler

In the former method, the interval time between the executed
programs can keep the specified value. However, the execution
time of the own program is not taken into consideration. Thus,
if a regular time is needed, a mechanism is required to
parallelly execute both the program and “sleep” command so
that they are started at the same time. “xargs” command can
be used in order to simply solve it. In the latter method, they
can specify the time of the server as a trigger, so the problem
that occurs in the former method is solved. However, a new
problem arises that the regular time cannot be set to less than
1 minute. Therefore, the former method is applied when the
execution time is less than 1 minute. Otherwise, the latter
method is applied.

Fig. 1. Operating frequency

Fig. 2. Prime number generation test.

Fig. 3. FLOPS test.
Figure 1, 2, and 3 show the operating frequency, the

execution time of the prime number generation test, and the
evaluation results of the FLOPS test, respectively. Those data
are collected from May 1st to May 31st. The horizontal axis
represents measurement date and time.

In Fig. 1, the vertical axis represents operating
frequency[MHz]. As shown in Fig. 1, no change can be
observed although these numerical values are logically
dynamic items. It can be considered that the continuous
operations supposed in this evaluation may inhibit the dynamic
voltage and frequency scaling (DVFS). Thus, it is required to
collect the values under an assumption that the interval time is
randomly selected considering the DVFS. In addition, “Intel
Turbo Boost” and other factors should be also considered
since they may affect the frequency characteristics.

In Fig. 2, the vertical axis represents execution latency[sec]
to generate 1000 prime numbers. From Fig. 2, it can be
observed that the latencies are usually varied within a certain
range and its average value is 0.064[sec] and the standard
deviation is 0.047[sec]. However, it can be also observed that
they may become outlier values such as 9.6 on May 16th while
no abnormal behavior is performed. Figure 3 shows the
evaluation results of the FLOPS test. The vertical axis
represents the calculation performance[MFLOPS]. It can be
observed that the values are also varied within a certain range

and its average value is 3.5[MFLOPS] and the standard
deviation is 0.63[MFLOPS]. No extreme outlier value is
observed in this evaluation. These collected data are used for
AI learning.

III. Power consumption measurement
It can be considered that side channel information is also

used to detect abnormal behaviors. One of considerable side
channel information is power consumption. In this research, an
automated measurement system of power consumption is
developed in order to collect a large number of learning data.
We introduce a measurement product which can check the
power consumption of the target server whose supply voltage
is 100[V] through a smartphone application. Normally, the
value of the power consumption must be visually checked
through the application which is installed in a tablet. Thus,
macro instructions are used to automatically upload Excel-
format power consumption data from the tablet to a data
collection server. Figure 4 shows an example of power
consumption measurement.

Fig. 4. Power consumption measurement.

However, in this evaluation, it is observed that the

developed measurement system may cause several blanks for
a certain period of time. Since there is no problem with the
environment and used method, it is considered to be a problem
with the product specifications. Currently, this product is used
since there is no other alternative measurement instrument. If
continuous data is required, another measurement method is
reconsidered.

IV. Conclusion

This paper has proposed a diagnosis-based hardware Trojan
tolerate system based on the deep learning scheme for certain
configuration machines, and several methods and tools to
collect data for AI learning. It is our future work to learn the
AI and try to detect abnormal behaviors with the AI. It is also
in the scope of our future work to improve the normal behavior
model in which various loads and time to run are randomly
selected.

Acknowledgments

This work was partially supported by JSPS KAKENHI
Grant Numbers JP20K11805 and JP21H04868.

References

[1] Mohammad Tehranipoor et al., “A survey of hardware
trojan taxonomy and detection,” IEEE Design & Test of
Computers, 27(1):10–25, 2010.

[2] Trust-hub. https://www.trust-hub.org/.
[3] Intel Processor Diagnostic Tool,
https://www.intel.co.jp/content/www/jp/ja/support/articles/00
0005567/processors.html

0

1000

2000

3000

4000

5/1 5/8 5/15 5/22 5/29

Fr
eq

ue
nc

y [
M

Hz
]

Date

0

2

4

6

8

10

5/1 5/8 5/15 5/22 5/29

La
ten

cy
 [s

ec
]

Date

0

2

4

6

8

10

5/1 5/8 5/15 5/22 5/29Pe
rf

or
m

an
ce

 [M
FL

O
PS

]

Date

- 197 -

!

!

∀!

#!

∃#%!∀%∀# ∃#%!&%!∋ ∃#%!&%(! ∃#%!#%&# ∃#%!(%∃∋ ∃#%!)%!! ∃#%!)%#&

