
Feasibility Study of DSP Block Mapping Algorithms for FPGAs
Utilizing SAT-solver and Top-down ZDD Construction

Takuya Serizawa† Koyo Shibata† Takashi Imagawa‡ Hiroyuki Ochi†

†Graduate School of Information Science and Engineering, Ritsumeikan University
1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577 Japan

‡College of Science and Technology, Meiji University
1-1 Kanda Surugadai, Chiyoda, Tokyo, 101-8301 Japan

is0415hv@ed.ritsumei.ac.jp, is0358ir@ed.ritsumei.ac.jp, imagawa@meiji.ac.jp, ochi@cs.ritsumei.ac.jp

Abstract— This paper proposes two algorithms to
find the exact optimal technology mapping solution(s)
for DSP blocks of FPGAs, one using SAT solver and
the other using a top-down ZDD construction method.
The exhaustive depth-first search algorithm for DSP
block mapping by Shibata et al. introduced several
complicated rules for pruning and graph partition-
ing for speeding up. In contrast, the proposed ones
are relatively simple. The runtime of the SAT-solver-
based method is comparable to that of Shibata et al.,
and the ZDD-based method can enumerate all optimal
solutions.

I. Introduction

LUT-based island-style FPGAs, which appeared in the
late 1980s, had been widely used in various fields due
to their flexibility. However, many logic blocks and their
mutual interconnection were required when implementing
arithmetic operations, including multiplication, to FPGA
of that age. Thus, there was a large gap between LUT-
based FPGAs and ASICs in delay, area, and power con-
sumption. To efficiently implement datapaths of digi-
tal signal processing where arithmetic operations such as
multiply-add operations frequently appear, many FPGAs
having DSP blocks consisting of hard macros including
multipliers, have come to be seen[1].

To effectively use the DSP blocks, a technology map-
ping algorithm is required that finds the optimal mapping
of the application circuit using the DSP blocks of the tar-
get FPGA architecture. Ronak et al. proposed a greedy
algorithm for technology mapping for DSP blocks[2]. Al-
though the algorithm runs extremely fast, the optimality
of the solution is not guaranteed because the algorithm
depends on the random selection order of nodes to be cov-
ered. Shibata et al.[3] proposed an algorithm that finds
an exact optimum mapping solution in terms of the num-
ber of DSP blocks used and the wiring resources used
for interconnecting them. The algorithm conducts an ex-

haustive search based on a depth-first search from a given
data flow graph (DFG) that consists of the arithmetic op-
erators of the design. They experimentally demonstrated
that the exhaustive search algorithm successfully found an
exact optimal solution that the previous greedy algorithm
could not find.

This paper proposes two algorithms, one using a SAT
solver and the other using a Zero-suppressed Binary Deci-
sion Diagram (ZDD), for implementing an efficient exact
algorithm. Both SAT solver and ZDD are powerful tools
for finding solutions to a problem that needs exhaustive
enumeration of search space, such as the knapsack prob-
lem. SAT solver is a program that solves the Boolean sat-
isfiability (SAT) problem. The algorithm for solving the
SAT problem first appeared around the 1960s. Still, since
the 2000s, the algorithm has made great strides, and SAT
solvers are attracting attention as a fundamental technol-
ogy in various application domains. ZDD [4] is an efficient
data structure that represents a combination set. When it
was first proposed in the 1990s, it suffered from exponen-
tial memory usage for ZDDs on the way to constructing
the target ZDD. However, with the development of a new
method called the top-down ZDD construction method in
the 2010s, the application to various combination prob-
lems is now expanding [5].

From the DFG and the structural description of the
target DSP block, the proposed algorithms first enumer-
ate all subgraphs in the DFG that can be realized with
one DSP block and generate bit vectors representing the
subgraphs, followed by applying the SAT solver or ZDD.
After that, the proposed algorithm using the SAT solver
converts the bit vectors to a CNF formula that the map-
ping solution should satisfy. In addition, by giving a con-
straint to specify the upper bound of the number of DSP
blocks used and reducing this upper bound until the so-
lution cannot be found, the SAT solver finds one of the
solutions with the minimum number of DSP blocks used.
On the other hand, the proposed algorithm using ZDD
constructs a ZDD representing the solution set of all map-

SASIMI 2022 ProceedingsC-6

- 198 -

pings from the bit vectors by the top-down ZDD construc-
tion method. It finds the minimum number of DSP blocks
used by evaluating the constructed ZDD. It also recon-
structs the ZDD that represents only the solutions of the
minimum number of DSP blocks used and finds the total
number of such solutions.

Our experimental evaluation with a randomly-
generated 33-nodes DFG shows that the proposed method
using a SAT solver finds one solution with the mini-
mum DSP block used, 20, in 0.77 seconds. The proposed
method using ZDD constructs a ZDD of 21592 nodes rep-
resenting more than 5 × 1016 solutions in 353.32 seconds.
It also finds in 0.094 seconds that the minimum number of
DSP blocks used is 20, and there are 196 such solutions.

The rest of this paper is organized as follows. Section
2 reviews the target DSP block, the conventional map-
ping methods, SAT solver, and ZDD. Section 3 proposes
our mapping methods, and Section 4 presents the exper-
imental results. Finally, Section 5 gives a summary and
describes future works.

II. Background

A. DSP block

DSP block is a hardware block in FPGAs that consists
mainly of dedicated circuits for arithmetic operations such
as multipliers and adders/subtractors, and that has a cer-
tain degree of programmability[1]. Typically, it supports
multiply-add operations that frequently appear in the dig-
ital signal processing domain and realizes desirable arith-
metic units in terms of performance and power efficiency.
While there are various DSP blocks due to the variety
of design concepts of FPGA vendors and the diversity in
the target application domain, the explanations and ex-
periments of the search algorithms in this paper target
the DSP block DSP48E1 from Xilinx for simplicity1. As
shown in Fig.1, DSP48E1 is a DSP block equipped with a
low-power pre-adder, a 25 × 18-bit 2’s complement multi-
plier, a 48-bit accumulator, a pattern detector, registers,
and so on[6]. This paper uses a simple model that focuses
only on the adder/multiplier of DSP48E1; we do not care
about the bit width of registers and signal wires.

B. Technology mapping algorithm for DSP blocks

Technology mapping for DSP blocks is to generate an
implementation of a given application circuit using the
DSP blocks of the target FPGA architecture. Similar to
the LUT mapping, finding an optimal mapping in terms
of area, power, and delay is required. This paper mainly
focuses on minimizing the number of DSP blocks used.

Ronak et al. proposed a greedy algorithm for technol-
ogy mapping for DSP blocks[2]. This algorithm uses a

1However, the proposed algorithm is also applicable to DSP
blocks other than DSP48E1.

Fig. 1. Xilinx’s DSP48E1 architecture[6]

Fig. 2. Generation of template database (TDB)

pre-prepared template database (TDB). TDB is a list of
feasible operation patterns by the configuration of the tar-
get DSP block. DSP block DSP48E1, the target of [2], is
modeled as three arithmetic units connected in series as
shown in Fig. 2(A). By choosing enabled arithmetic units
from Fig. 2(A), we can find the six arithmetic patterns
shown in Fig. 2(B). For the given application circuit, gen-
erate a DFG that represents it. After that, repeatedly
select a node N randomly from the unmapped nodes in
the DFG until all the nodes are covered. At each selection
of N , among the largest possible fan-out free subgraphs
starting with N , those matching TDB are covered by one
DSP block. Ref. [2] also proposed an improved algorithm
that preferentially applies the one with a larger number of
arithmetic units among the arithmetic patterns in TDB.
The problems with their methods include (1) it is special-
ized for DSP48E1 of Xilinx, (2) it depends on the random
selection order of N , and its optimality is not guaran-
teed, and (3) since mapping by duplicating a DFG node
with multiple fanouts is not attempted, it cannot find the
optimum solution that [3] can find described later.

Shibata et al. proposed an exhaustive search algorithm
that finds an optimal mapping [3]. This algorithm has
two notable features as follows.

• It replicates node(s) in a target DFG when it leads
to the DSP reduction.

- 199 -

• It extensively applies pruning and DFG partitioning
techniques to reduce the runtime while guaranteeing
its optimality.

This algorithm also utilizes TDBs but they are automati-
cally generated from a structural description of the target
DSP block. The flow of the algorithm is as follows.

• For each node of a target DFG, enumerate subgraphs
that terminate at the node.

• Enumerate the subgraph combinations that cover all
the nodes in the target DFG with a depth-first search.

• Among the enumerated combinations, find the op-
timal solution that minimizes the objective function
(number of DSPs and their interconnection).

Since the algorithm can only find one mapping even if
there are multiple mappings that minimize the objective
function, it is difficult to consider other objective func-
tions based on a comparison of multiple optimal solutions.
The introduction of new objective functions to the algo-
rithm is not easy due to the complexity of the pruning
and partitioning process.

III. Proposed Method

A. Overall Flow

Fig. 3 shows the overall flow common to the two pro-
posed mapping methods. The flow’s inputs are the design
description of the application circuit to be mapped and
the structural description of the target architecture’s DSP
block. DFG is generated by parsing the former, and TDB
similar to Sect. II.B is automatically generated from the
latter. Next, the graph substructures (subgraphs) in the
DFG that are realizable with one DSP block are extracted
by matching TDB to DFG. For each such subgraph g,
generate a 3n-bit vector to represent (1) the node that
generates g’s output (avail_node), (2) the input source
nodes for g that is the intermediate node of the DFG
(req_node), and (3) the nodes covered by g (cov_node),
where n is the number of nodes in the DFG. For exam-
ple, the output node of the subgraph g shown by the red
ellipse in Fig. 4 is node 4. Thus avail_node of g is ex-
pressed by a bit vector 001000 in which the 4th digit is 1.
While, g requires input from node 1, and its req_node is
expressed as 000001. cov_node of g is expressed as 001010
since it covers nodes 2 and 4. Therefore, the bit vector
representation of g is 001000_000001_001010. Mapping
by SAT solver or ZDD is performed using the subgraphs
expressed by the bit vectors, and the mapping result is
output. The solution obtained as a mapping result must
satisfy the following two conditions.

1. For each primary output of the DFG, there must be
a subgraph that produces it.

Fig. 3. Overall Flow Common to the two Proposed Mapping
methods

Fig. 4. An Subgraph represented by bit vectors

2. If a source of a subgraph contained in the solution is
an intermediate node of the DFG, another subgraph
that produces the output of that intermediate node
must also be in the solution.

Fig. 5 shows an example of a combination of subgraphs
satisfying these two conditions. Node 6 is the primary
output node of the DFG. The output of Node 6 is obtained
by Subgraph g1, and the input sources of g1 are Nodes 2
and 5. The output of Node 2 and that of Node 5 are
obtained by Subgraphs g3 and g2, respectively.

B. Proposed Mapping Method using SAT Solver

The proposed technology mapping flow using the SAT
solver is as follows.

Step 1: From each bit vector expressing a subgraph,
generate a CNF formula describing the con-
straint the mapping solution should satisfy.

Step 2: Give the CNF formula of Step 1 to the SAT
solver, and if a solution is found, set a smaller
value to the upper limit constraint for the num-
ber of DSP blocks used and execute the SAT
solver again.

Step 3: Repeat Step 2 until the solution cannot be
found (UNSAT).

In Step 1, using the subgraph information (avail_node,
req_node, and cov_node) extracted as a bit vector, a
CNF formula consisting of the variables corresponding
to subgraphs is generated to represent the following con-
straints.

- 200 -

Fig. 5. Subgraph combination conditions

Fig. 6. Redundant subgraph combinations

1. For each primary output node of the DFG, at least
one subgraph containing it in avail_node must be
adopted.

2. If the subgraph g is adopted, for every “1” bit of g’s
req_node, it must be included in the avail_node of
another adopted subgraph.

3. If the cov_node of the subgraph g1 is contained in
that of g2, g1 and g2 cannot be adopted at the same
time.

Constraints 1 and 2 corresponds to the two conditions
described in Sect. III.A. While the mapping shown in
Fig. 6(A) and in Fig. 6(B) needs the same number of
DSP blocks, the latter is better in terms of actually used
(i.e., power-consuming) arithmetic components. For this
reason, we prune the solution of the former type, as in [3],
and introduce Constraint 3 for this purpose.

C. Proposed Mapping Method using ZDD

The proposed technology mapping flow using the top-
down ZDD construction method is as follows.

Step 1: Considering every edge connecting the sub-
graphs in the DFG, sort the subgraphs, so that
the source subgraph appears earlier than the
sink subgraph2.

Step 2: Construct a ZDD that represents a set of com-
binations of subgraphs that satisfy the two con-
ditions described in Sect. III.A using the top-
down ZDD construction method. Here, ZDD

2We assume that the given DFG is a directed acyclic graph.

nodes are generated from the root level corre-
sponding to the order of subgraphs determined
in Step 1.

Step 3: Extract the solution with the minimum number
of subgraphs (= number of DSPs) from the ZDD
constructed in Step 2.

In Step 2 above, ZDD is constructed by the top-
down ZDD construction method using avail_node and
req_node of the subgraphs extracted by the preprocessing
described in Sect. III.A. When we use the top-down ZDD
construction method, we need to put each ZDD node a
variable that represents the search state of that node[5].
In the proposed method, the solution is searched while
selecting/not selecting the subgraph according to the or-
der obtained in Step 1. At each ZDD node, the set of
DFG nodes whose output was obtained by the subgraphs
selected during the ZDD path up to that node is stored in
a state variable avail_set. This variable is realized by a
bit vector with the same number of digits as the number
of DFG nodes, like avail_node and req_node.

Before selecting a new subgraph, check whether all the
req_nodes of that subgraph appear in the avail_set ob-
tained so far. (Note that the subgraph selection order
is sorted in Step 1, so the selection/non-selection of all
subgraphs that can cover the new subgraph’s req_node
has already been decided.) If all req_nodes of the new
subgraph are not included in avail_set, such subgraph
is unselectable in this search path. When the subgraph
is selectable, introduce a ZDD node that branches with
and without selecting the subgraph, and set its 1-branch’s
avail_set with the union of the subgraph’s avail_node and
the parent node’s avail_set. Fig. 7 shows the pseudo-code
of the ZDD node construction function getChild() for im-
plementing the proposed algorithm using the TdZdd pack-
age. Manipulation and test of bit vectors are performed
by bitwise logic operations. If all primary output of the
DFG is covered by avail_set after this operation, the com-
bination of subgraphs selected in this path is a solution.

ZDD constructed by Step 2 represents a set of all
solutions, including both optimal and redundant solu-
tions. Therefore, Step 3 reconstructs ZDD by filtering
out the solutions whose number of DSP blocks used is
non-minimum. Figures 8(a) and (b) show the ZDDs after
Step 2 and Step 3, respectively, given DFG6 (to appear
in Sect. 4) to the proposed algorithm.

IV. Performance Evaluation

In this section, we compare the mapping runtime and
the results by the existing method of Shibata et al.[3]
and the two proposed methods described in Section 3.
Four DFGs (DFG6, DFG10, DFG20, DFG33) with 6,
10, 20, and 33 arithmetic nodes were used for the eval-
uation. Each DFG is composed of nodes with addition

- 201 -

// n : number of subgraph(s)
// avail_set : set of DFG nodes covered by the output(s) of
// subgraph(s) selected along the ZDD path so far
// level : level of current ZDD node
// (numbered in descending order from the root node)
// value : 1 if current subgraph is selected and 0 otherwise
// req_node[n-level] : required node(s) by current subgraph
// avail_node[n-level] : output node(s) of current subgraph
// po : primary output node(s) of the DFG
getChild(avail_set, level, value) {

if (value == 1) {
if((avail_set & req_node[n-level]) != req_node[n-level]) {

return 0;
}
avail_set |= avail_node[n-level];

}
level--;
if((avail_set & po) == po) return -1;
return level;

}

Fig. 7. getChild() function for the proposed algorithm

(a) after Step 2 (b) after Step 3

Fig. 8. ZDD representing a set of all solutions of DFG6

or multiplication operators, and all nodes have a connec-
tion with other nodes or the external inputs/outputs. As
the target DSP block, we used the same model as the
previous works used (Fig. fig:templatedb(a)), which is a
simplified model of Xilinx’s DSP48E1. DFG/TDB gen-
eration, subgraph extraction, and all processing of exist-
ing methods were implemented by Python (ver.3.10.2),
syntax analysis was implemented using a Python library
PLY (ver.3.11), and graph data manipulation was imple-
mented using Networkx (ver.2.6.3). The SAT-based pro-
posed mapping method was implemented using Python
(ver.3.10.2) and Z3-solver (4.8.16.0) Python library. The
ZDD-based counterpart was implemented using gcc-9.3.0
(C++ 20) and TdZdd (ver.1.1) C++ library. The time re-
quired for each mapping method in this experiment does
not include the time for DFG and TDB generation and
subgraph extraction; the needed time refers to those after
starting the mapping flow using the extracted subgraph
until the output of the result.

Tab. I shows the runtime of the program when map-

ping DFGs by each method, Tab. II shows the mapping
result by the SAT-based method, and Tab. III shows the
mapping result by the ZDD-based method. The minimum
number of DSP blocks used in the optimal solution found
by each mapping method was the same. The ZDD size
after Step 2 in Tab. III shows the number of nodes of ZDD
that represents all solutions, including both the optimal
and redundant solutions. The ZDD size after Step 3 in
Tab. III shows the number of nodes of ZDD that repre-
sents only the optimum solutions in terms of the number
of DSP blocks used.

From Tab. I, the ZDD-based mapping method is the
fastest for DFG6 and DFG10, but as the number of DFG
nodes increases, the runtime increases significantly, and
Shibata et al.’s method becomes faster. This is because
Shibata et al.’s method took measures against combina-
tional explosions by pruning and graph partitioning, but
the proposed method does not at this time. Unlike the
ZDD-based mapping method, the runtime increase of the
SAT-based counterpart against the DFG size is relatively
moderate. It seems comparable to that of Shibata et al.’s
method.

From Tab. II, we can observe that the SAT-based map-
ping method finds a solution speedily if the solution(s)
exists. Still, it takes a lot of time to obtain one having
the minimum number of DSP blocks by narrowing down
the solution using UNSAT judgment. The above results
suggest that the SAT solver is excellent for arbitrarily
finding one solution but not suitable for finding the best
among multiple solutions. At the same time, if the goal
of the number of DSP blocks used is given in advance, it
can find one solution that meets the criteria faster than
the existing method.

From Tab. III, we can see that as the number of DFG
nodes increases, the total number of solutions increases
explosively, while the total number of optimal solutions is
much smaller. This result is an exciting finding suggesting
that it is difficult to find and enumerate all optimal solu-
tions in technology mapping using a depth-first search.

Regarding the runtime of the ZDD-based proposed
method, (1) the increase in runtime is not so sharp as
the increase in the total number of solutions, and (2) the
runtime is dominated by the construction of ZDD repre-
senting all solutions in Step 2. A solution of more than
5 × 1016 is found from DFG33, and the runtime for map-
ping solutions increases significantly. However, most of it
is the runtime for constructing ZDD for representing all
solutions, and the reconstruction of ZDDs representing
the optimal solutions only is still very fast. In addition,
the number of nodes of the ZDD that represents more
than 5×1016 solutions is 21592, and the number of nodes
of the reconstructed ZDD that represents only 196 op-
timal solutions is also suppressed to 185. These results
are brought by the characteristics of ZDD that enable
calculations without solid dependency on the number of
solutions. We can confirm that the top-down ZDD con-

- 202 -

TABLE I
Mapping results of proposed and conventional methods

(a) Specifications of DFGs used in the experiment
DFG6 DFG10 DFG20 DFG33

DFG Nodes 6 10 20 33
Number of Subgraphs 14 20 43 78

Minimum DSP
blocks used 3 6 13 20

(b) Runtime for each method[s]
Mapping Method DFG6 DFG10 DFG20 DFG33

Conventional 0.0046 0.0076 0.014 0.58
SATsolver 0.035 0.040 0.14 0.77

ZDD 0.001 0.005 0.094 354.44

TABLE II
Mapping results of using SATsolver

DFG Limit constraint for the
number of DSP blocks used

Runtime of
the SAT decision[s]

DFG6 5 0.0076
3 0.00091

UNSAT 0.00030
DFG10 8 0.0077

6 0.0011
UNSAT 0.00064

DFG20 13 0.0086
UNSAT 0.079

DFG33 22 0.010
21 0.0041
20 0.11

UNSAT 0.54

struction method can significantly contribute to speeding
up the exhaustive enumeration of solutions.

V. Conclusion

This paper have proposed two exact algorithms to find
optimal DSP mappings for FPGAs. The proposed SAT-
based method, which is simpler to implement than the
previous method, finds the optimal solution in a compa-
rable run-time. The other proposed method utilizing the
top-down ZDD construction enumerates all the optimal
mappings that minimize the number of DSP blocks, in
exchange for an acceptable increase of run-time. In fu-
ture works, we will introduce (1) the pruning and DFG
partitioning techniques employed in the previous method
into the proposed method to reduce the run-time, and (2)
other metrics in the optimization objective, such as power
consumption and signal propagation delay. The proposed
algorithms and their improved versions are expected to
contribute to the design space exploration of FPGAs with
multile types of DSP blocks.

References

[1] Amano, H.: Principles and Structures of FPGAs,
Springer (2018).

TABLE III
Mapping results of using ZDD

(a) Number of all solutions and optimal solutions

DFG Number of all solutions Number of
optimal solutions

DFG6 238 4
DFG10 2334 8
DFG20 3976018364 264
DFG33 5236607862923102208 196

(b) Runtime breakdown and ZDD size

DFG
Runtime

until
Step 2 [s]

ZDD size
after

Step 2

Runtime
of Step 3 [s]

ZDD size
after

Step 3
DFG6 0.001 74 0.001 9
DFG10 0.004 271 0.001 31
DFG20 0.084 1236 0.005 135
DFG33 353.63 21592 0.094 185

[2] Ronak, B. and Fahmy, S. A.: Mapping for Maximum
Performance on FPGA DSP Blocks, IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), Vol. 35, No. 4, pp. 573–585 (2016).

[3] Shibata, K., Imagawa, T. and Ochi, H.: A Feasibility
Study on Realizing General-purpose Technology
Mapper for DSPs of FPGAs Using Exhaustive Search,
SASIMI 2021 Proceedings, pp. 61–66 (2021).

[4] Shin-ichi Minato: Zero-suppressed BDDs for set
manipulation in combinatorial problems, 30th
International Design Automation Conference
(DAC’93), pp. 272–277 (1993).

[5] Toda, T., Saito, T., Iwashita, H., Kawahara, J.
and Minato, S.: ZDDs and Enumeration Problems:
State-of-The-Art Techniques and Programming Tool,
Computer Software, Vol. 34, No. 3, pp. 3_97–3_120
(2017).

[6] Xilinx Corporation: 7 Series DSP48E1 Slice
User Guide, https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_
DSP48E1.pdf (2011).

- 203 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

