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Abstract— In this work, we aim to address the

memory congestion problem of modern GPUs by in-

corporating a remote access tag array (RATA) into the

baseline architecture. With the assistance of RATA,

GPUs are able to service replicated cache requests

within stream multiprocessor (SM) clusters without

resorting to the level-two (L2) cache. Our experimen-

tal results show that the adoption of RATA has the

potential to alleviate the memory congestion problem

and enhance the overall system throughput.

I. Introduction
Contemporary graphics processing unit (GPU) archi-

tectures feature a large number of stream multiprocessors
(SMs) grouped into multiple SM clusters [1]. To conserve
memory bandwidth, each SM is equipped with its own
private level-one (L1) cache, which is backed up by a uni-
fied level-two (L2) cache connected via a network-on-chip
(NoC) fabric, as depicted in Fig. 1. As the number of SMs
increases, memory bandwidth often becomes the perfor-
mance bottleneck due to congestion [2]. Moreover, the
clustering of SMs further exacerbates this problem as all
SMs within a cluster share a common link to the NoC.

The bandwidth inefficiency of the current cache config-
uration stems from the private nature of the L1 caches.
Due to the lack of communication among them, cache
lines may be fetched repeatedly from the L2 cache by dif-
ferent SMs [2, 5]. Fig. 2 demonstrates such a scenario
in terms of the replication rate, which is defined as the
percentage of cache miss requests that can be found in
other L1 caches within the same cluster, for a number
of benchmarks [3, 4]. It is observed that for the replica-
tion sensitive benchmarks, such as cfd, lud, AlexNet, and
ResNet, 68% of the global memory reads are dedicated
to fetching cache lines that are already cached within the
same cluster, leading to inefficiency in bandwidth usage.

In light of the above issue, an array of works have been
proposed to reduce the number of replicated cache re-
quests by either employing a shared L1 cache [5] or intro-
ducing extra inter-SM links [2]. In this work, we explore
the use of a per-cluster remote access tag array (RATA),
a cache-like structure similar to that used in [6], to effi-
ciently service replicated requests within clusters with an
aim to alleviate the memory congestion problem. To val-
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Fig. 1. The baseline GPU architecture containing SM clusters.
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Fig. 2. The replication rate of the replication-sensitive (left-hand
side) and the replication-insensitive benchmarks (right-hand side).

idate our idea, we perform two motivational experiments
and show that the adoption of RATA is potentially ben-
eficial in boosting the throughput of the baseline GPU.

II. Methodology
In this section, we introduce the detailed organization

and workflow of RATA, a per-cluster component that
manages the inter-SM access traffic within an SM cluster.
Note that in the following sections, RATA is incorporated
into a baseline GPU featuring ten 8-SM clusters, 48KiB
of per-SM L1 cache, and a 40-bit global address space.

In the proposed architecture, RATA is employed to keep
track of the SMs that cache a copy of a specific cache line.
In order to enable fast lookup and replacement, RATA
is constructed as a typical set-associative data cache that
employs least recently used replacement policy. Similar to
a typical data cache, each entry within RATA comprises
of a 1-bit valid indicator and a 27-bit cache tag to enable
efficient lookup operation. However, instead of storing
the full 128-byte data line, RATA only stores a 3-bit data
field to indicate which SM within the cluster has lastly
requested for a copy of that cache line from the L2 cache.

Fig. 3 shows the inter-SM access workflow of RATA.
The process is elaborated as follows. 1 As a memory
response exits the response buffer, a RATA entry is allo-
cated and set up to point to the SM that has requested for
the cache line. 2 On an L1 cache miss, RATA is accessed
to check whether the missed line resides in one of the L1
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Fig. 3. The workflow of RATA consisting of five steps.

caches in the cluster. 3 If the RATA access results in
a hit, the memory request is redirected to access the L1
cache of the SM pointed to by the RATA entry. 4 If the
L1 cache access hits, the requested cache line is pushed to
the tail of the response buffer to be send to the requesting
SM. 5 Finally, as the request reaches the head of the re-
sponse buffer, it is directed to the original requesting SM,
completing the inter-SM access process. Please note that
in 5 , RATA is not updated and the requested cache line
is not filled into the L1 cache of the requesting SM. Due to
the shared nature of RATA, an entry within RATA can be
replaced before its corresponding line is evicted from the
L1 cache, leading to a RATA lookup miss. This is referred
to as the false-negative error hereafter. In addition, the
L1 cache access in 4 does not guarantee a hit as RATA
is not informed of cache line evictions in the L1 caches.
Thus, the information RATA holds can be out-of-date.
This is referred to as the false-positive error hereafter.

III. Experimental Results

In this section, we present two motivational experi-
ments to demonstrate the potential benefit of RATA. In
these experiments, we model the baseline and our pro-
posed architecture using the GPGPU-sim [7] simulator,
and perform simulation on a number of benchmarks se-
lected from the Rodinia [3] and the Tango [4] benchmark
suites. Please note that in the following experiments, we
assume that the accesses to RATA have zero latency.

In the first experiment, we assume that the per-cluster
RATA can capture all potential replicated requests. In
other words, in this ideal scenario, RATA does not incur
any false positive or false negative error. Fig. 4 shows the
performance gain of incorporating RATA in terms of in-
structions per cycle (IPC). It is observed that the perfor-
mance of the baseline is improved by an average of 134%
across the replication sensitive benchmarks. RATA allows
part of the cache misses, which would have consumed pre-
cious bandwidth to the L2 cache, to be serviced within the
cluster by the other SMs. As a result, the memory conges-
tion is relieved, enhancing the overall system throughput.

In the second experiment, we simulate the actual re-
placement behavior of RATA to demonstrate its effective-
ness in capturing replicated requests. Our experimental
results suggest that even with the presence of the false-
positive and false-negative errors, RATA is can still cap-
ture 94% of all potential replicated requests across the
replication sensitive benchmarks, as shown in Fig. 5.
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Fig. 4. The normalized IPC in under ideal scenario. The left (red)
and the right (green) half of the image show the performance of
the replication-sensitive and insensitive benchmarks, respectively.
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Fig. 5. The percentage of replicated requests captured by RATA.

IV. Conclusion
In this work, we propose to alleviate the memory con-

gestion problem by introducing RATA. Our experimen-
tal results suggest that RATA is able to capture most of
the replicated memory requests, and can potentially ease
memory congestion and enhance GPU performance.
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