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Abstract -  Design automation that realizes analog integrated 

circuits to meet performance specifications in a small area is 

desired. To reduce the layout area, “Bottleneck Channel Routing” 

is proposed in which two wires go through a routing track in the 

bottleneck region. A two-layer routing problem that consists of 

the bottleneck channel and the adjacent regions where the HV 

rule is not applicable is defined. The proposed algorithm uses a 

U-shaped routing model, and generates two-layer routing in 

which the number of intersections is minimized and the wire of a 

net includes at most one via. The obtained routing contains no 

conflicts if the algorithm outputs a feasible solution. 

 

 

I. Introduction 
 

 Analog VLSI uses a circuit architecture with high tolerance 

to variation and noise and must meet various performance 

specifications such as current, voltage, phase, cutoff frequency, 

and signal waveform. The analog layout design is required not 

to deteriorate the circuit performance. On the other hand, it is 

important to realize a layout in a small area while meeting 

performance specifications to reduce manufacturing costs. The 

objective of our research is to develop a routing framework 

that enable us to layout a circuit in small area while meeting 

performance specifications.  

 The circuit size of analog VLSI is typically smaller than that 

of digital VLSI. Analog VLSI often uses fewer routing layers 

than digital VLSI. In VLSI with fewer routing layers, cell-

based design where the routing area is defined between cells is 

often adopted. In various design flows for cell-based design 

[1], the routing area is partitioned into small routing regions 

called channel or switchbox, and various routing algorithms 

for such regions have been proposed [2,3,4]. 

A design flow without repeating design is preferred [5,6,7]. 

A routing design flow with two-layer HV routing without 

repeating routing design in which the routing in each layer 

consists of horizontal segments (H) or vertical segments (V) 

has been established. However, the obtained layout may 

contain a routing region which is a bottleneck for area 

reduction. The layout area may be reduced if two wires go 

through a routing track in such a bottleneck region (Fig. 1(a)) 

and the height of the bottleneck region is reduced. 

 In this paper, we propose Bottleneck Channel Routing 

(Fig. 1(b)). In Bottleneck Channel Routing, two wires go 

through a routing track in different layers in the bottleneck 

channel. Arbitrary routing is used in adjacent regions which is 

adjacent to the bottleneck channel, and HV routing is assumed 

in the other regions. In the following, bottleneck channel 

problem is defined, and an algorithm for a two-layer two-pin 

net bottleneck channel problem where pins of each net are 

placed on the upper boundary of the adjacent regions is 
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proposed. 

 The proposed algorithm obtains a solution in which a U-

shaped routing model where the wire of each net consists of 

three segments is used. In a routing obtained according to the 

solution, the number of intersections, in case that the solution 

is regarded as a planer routing, is minimized, and the wire of a 

net uses at most one via, but conflicts may be contained. A 

solution is defined as feasible if no segments of different nets 

share the same coordinate on the same layer. Otherwise, it is 

defined as infeasible. Even if the algorithm outputs an 

infeasible solution, there exists a corresponding feasible two-

layer topological routing, and a feasible routing can be 

obtained if vias can be inserted in the middle of segment 

without violations. 

 

 

II. Bottleneck Channel Problem 
 

 Bottleneck channel problem (Fig. 2) is a routing problem 

defined on routing area that consists of a bottleneck channel 

and adjacent regions on both sides. The connection 

requirement among pins is called net. Pins of each net are 

placed on the boundary of adjacent regions. A wire which 

connects pins of a net goes through a track in the bottleneck 

channel, and two wires can go through a track in different 

layers.  

If two wires intersect in the planar projection of a two-layer 

routing, the two wires must be assigned to different layers at 

the intersection. Vias must be inserted to a wire when the 

routing layer of the wire is changed. Note that at most one via 

is enough to insert between two adjacent intersections along a 

wire in the planar projection. 

In routing design, multi-pin nets are given as an input, but a 

multi-pin net can be regarded as a set of two-pin nets. In the 

following, a basic bottleneck routing problem in which two-

pin nets are given as an input is considered. In two-layer 

bottleneck channel problem, if each net has one pin on the 

boundary of each adjacent region, then the connection 

requirement can be satisfied by a topological routing in which 

at most one via is inserted for each net. To show that there is a 

such topological routing, in the next section, “U-shaped two-

layer routing problem” is introduced. 

III. U-shaped two-layer Routing Problem 
 

 U-shaped two-layer routing problem which can be used to 

determine a feasible topological routing of a two-layer two-pin 

net bottleneck channel problem is discussed. 

 In a U-shaped two-layer routing problem, each net has one 

pin on the upper boundary of each adjacent region. The 

problem is to obtain a two-layer routing in which wires of 

different nets do not intersect with each other and that satisfies 

the following conditions. 

1. The wire of each net consists of one horizontal and two 

vertical segments, and each segment is assigned to either 

layer 1 or layer 2. 

2. At least one vertical segment of each net is assigned to 

the same layer where the horizontal segment is assigned. 

In a solution satisfying the conditions above, if the two 

vertical segments of a net are assigned to the layer of the 

horizontal segment of the net, no via is inserted in the wire of 

the net, and if one is assigned to a different layer, one via is 

inserted between the vertical segment and the horizontal 

segment. 

If a vertical segment, which is assigned to the different layer 

of the horizontal segment of the net, is located within the 

interval of the other net which is assigned to the same track, 

then the vertical segment and the horizontal segment of the 

other net share the same coordinate on the same layer, and the 

solution contains a conflict. Note that, however, the conflict 

can be resolved by inserting the via to the middle of the vertical 

segment, between the end of it and the next track. 

In the following, U-shaped two-layer routing problem 

where the number of tracks is assumed to be half of the number 

of nets is formulated, and U-shaped routing algorithm U2TLA 

to solve the problem in which the track and layer assignment 

of segments are determined is proposed. Also, it is shown that 

the routing obtained according to U2TLA has no conflicts in 

case that U2TLA outputs a feasible solution.  

In a U-shaped two-layer routing problem, the routing area 

𝐺𝑚 (Fig. 3) for 2𝑚 two-pin nets is modeled by a routing grid 

(−2𝑚 ≤ 𝑥 ≤ 2𝑚, 0 ≤ 𝑦 ≤ 𝑚) where the y-axis corresponds 

to the degenerated bottleneck channel, the region 𝑥 < 0 

corresponds to the left-adjacent region, and the region 𝑥 > 0 

corresponds to the right-adjacent region. A pin is placed at grid 

point (𝑥, 0) on the x-axis where 𝑥 is an integer (1 ≤ |𝑥| ≤
2𝑚 ). A pin placed on grid point (𝑥, 0)  is called left pin if 

−2𝑚 ≤ 𝑥 ≤ −1, and right pin if 1 ≤ 𝑥 ≤ 2𝑚. Each two-pin 

net consists of one left pin and one right pin. Track 

𝑡 (1 ≤ 𝑡 ≤ 𝑚)  is the grid line connecting (−2𝑚, 𝑡)  and 
(2𝑚, 𝑡) (Fig. 3). 

Each track is assigned at most one net each on layer 1 and 

layer 2. The wire of a net consists of two vertical segments 

whose x-coordinates are the x-coordinates of pins of the net 

and one horizontal segment which is assigned to a track. Each 

segment is assigned to either layer 1 or layer 2. When segments 

of different nets share a coordinate, they must be assigned to 

different layers in a feasible solution. 
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Fig. 2. Two-layer bottleneck routing 
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U-shaped two-layer routing problem 

Input: 

 net set 𝑁 = {𝑛1, 𝑛2, … , 𝑛2𝑚} (𝑚 > 0) 

 𝑛𝑖 = (𝑙𝑖 , 𝑟𝑖) 

−𝑙𝑖 ∈ ℕ+, 𝑟𝑖 ∈ ℕ+(𝑙𝐼 < 0, 𝑟𝑖 > 0, (∀𝑖 ∈ ℕ+)), 

𝑙𝑖 ≠ 𝑙𝑗 , 𝑟𝑖 ≠ 𝑟𝑗  (𝑖 ≠ 𝑗, ∀𝑖, 𝑗 ∈ ℕ+) 

Output: 

 track assignment of horizontal segment of each net 

𝐴𝑇 ∶ 𝑁 → {1,2, … , 𝑚} 

 layer assignment of each segment 

left vertical segment  𝐴𝐿 ∶ 𝑁 → {1, 2} 

horizontal segment   𝐴𝑀 ∶ 𝑁 → {1, 2} 

right vertical segment 𝐴𝑅 ∶ 𝑁 → {1, 2} 

 

If there are various solutions that satisfies the conditions, a 

solution that can enable us to derive a feasible routing is 

preferred. Also, the following indices defined in a derived 

feasible routing will be used as evaluation of solutions. 

1. the number of vias that are not at the end of segment. 

2. the number of vias that are not at grid points. 

3. the number of vias. 

 

 

IV. U-shaped Routing Algorithm 
 

 In this section, we propose algorithm U2TLA for U-shaped 

two-layer routing problem. U2TLA selects nets one by one, 

determines the track assignment of horizontal segments from 

the upper track, and determines the layer assignment of 

segments. A via is inserted between a vertical segment and the 

horizontal segment of a net when they are assigned to different 

layers. 

 Variables and functions used in U2TLA are given below. 

 𝑡 : track number 

 𝑙(𝑛) : x-coordinate of the left pin of net 𝑛 

 𝑟(𝑛) : x-coordinate of the right pin of net 𝑛 

 𝐿min(𝑡) : the minimum x-coordinate of the left pin of 

nets whose horizontal segments are assigned to layer 2 of 

a truck whose track number is less than 𝑡. 

 𝑅max(𝑡)  : the maximum x-coordinate of right pin of 

nets whose horizontal segments are assigned to layer 1 of 

a track whose truck number is less than 𝑡. 

The nets, excluding the nets whose horizontal segments are 

assigned to track 1 ~ 𝑡 − 1 , which have the following 

property are referred by the following variables (Fig. 4). 

 𝑛𝐿(𝑡) : the net whose left pin x-coordinate is largest 

 𝑛𝑅(𝑡) : the net whose right pin x-coordinate is smallest 

 𝑛𝐿2(𝑡)  : the net whose left pin x-coordinate is second 

largest 

 𝑛𝑅2(𝑡) : the net whose right pin x-coordinate is second 

smallest 

 

Our proposed algorithm U2TLA is given below. 

 

U-shaped routing algorithm U2TLA 

 

Input: net set 𝑁 

Output: track assignment 𝐴𝑇, layer assignment 𝐴𝐿 , 𝐴𝑀, 𝐴𝑅 

 

Step 1. (initialization) 

 𝐿min(0) ≔ 0, 𝑅max(0) ≔  0 

 𝑡 ≔ 1 

Step 2. (select the nets 𝑛𝐿 , 𝑛𝑅 to be assigned) 

(A) if 𝑛𝐿(𝑡) ≠ 𝑛𝑅(𝑡) 

𝑛𝐿 ≔ 𝑛𝐿(𝑡) 

𝑛𝑅 ≔ 𝑛𝑅(𝑡) 

(B) otherwise (𝑛𝐿(𝑡) = 𝑛𝑅(𝑡)) 

(B1) if 𝑙(𝑛𝑅(𝑡)) < 𝐿min(𝑡) 

𝑛𝐿 ≔ 𝑛𝐿2(𝑡), 𝑛𝑅 ≔ 𝑛𝑅(𝑡) 

(B2) otherwise 

𝑛𝐿 ≔ 𝑛𝐿(𝑡), 𝑛𝑅 ≔ 𝑛𝑅2(𝑡) 

Step 3. (track assignment, layer assignment) 

 𝐴𝑇(𝑛𝐿) ≔ 𝑡 

𝐴𝑇(𝑛𝑅) ≔ 𝑡 

 𝐴𝐿(𝑛𝐿) ≔ 1 

𝐴𝑀(𝑛𝐿) ≔ 1 

𝐴𝑅(𝑛𝐿) ≔ {
1  (if 𝑅max(𝑡) < 𝑟(𝑛𝐿)

2  (otherwise)               
 

 𝐴𝐿(𝑛𝑅) ≔ {
2  (if 𝑙(𝑛𝑅) < 𝐿min(𝑡)

1  (otherwise)              
 

𝐴𝑀(𝑛𝑅) ≔ 2 

𝐴𝑅(𝑛𝑅) ≔ 2 

Step 4. 

 𝐿min(𝑡 + 1) ≔ min{𝐿min(𝑡), 𝑙(𝑛𝑅)} 

 𝑅max(𝑡 + 1) ≔ max{𝑅max(𝑡), 𝑟(𝑛𝐿)} 

Step 5. 

 𝑡 ≔ 𝑡 + 1 and stop if 𝑡 > 𝑚 

 return to Step 2. 

 

A solution obtained by U2TLA is said to be feasible if no 

segments of different nets share the same coordinate on the 

same layer, and is said to be infeasible otherwise. 

If either 𝑛𝐿(𝑡) ≠ 𝑛𝑅(𝑡) , 𝑙(𝑛𝑅(𝑡)) < 𝐿min(𝑡) , or 

𝑅max(𝑡) < 𝑟(𝑛𝐿(𝑡))  is satisfied for all track 𝑡 , then the 

solution is feasible. This will be confirmed later. In the 

following, track 𝑡 is said to satisfy feasible condition if either 

𝑛𝐿(𝑡) ≠ 𝑛𝑅(𝑡) ,  𝑙(𝑛𝑅(𝑡)) < 𝐿min(𝑡) , or 𝑅max(𝑡) <

𝑟(𝑛𝐿(𝑡))  is satisfied. Note that if track 𝑡  satisfies feasible 

condition, then either both 𝑛𝐿 and 𝑛𝑅 are set other than in 

Step 2(B2) or assigned 𝐴𝑅(𝑛𝐿) = 1 in Step 3. 

Fig. 3. Routing area 𝑮𝒎, tracks, and pins 

left pins right pins 

track
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If 𝑙(𝑛𝑅) > 𝐿min(𝑡)  in Step 3, then a via is required to 

insert to the wire of 𝑛𝑅. Similarly, if 𝑅max(𝑡) > 𝑟(𝑛𝐿), then 

a via is required to insert to the wire of 𝑛𝐿. If via is required 

to insert to 𝑛𝑅 (𝑛𝐿), 𝐿min (𝑅max) remains the same value 

in Step 4. Otherwise, it is updated by substituting the second 

term in Step 4. 

 Fig. 5 shows examples of layer assignments of segments 

determined in Step 3, which follows the net selection in Step 2. 

Fig. 5(A)-1,2,3 are the cases where a net is selected in 

Step 2(A). Fig. 5(B1)-1,2 and Fig. 5(B2)-1,2,3 are the cases 

where a net is selected in Step 2(B). The left and right figures 

show before track-2 assignments and the results of track-2 

assignment, respectively. The black and red lines represent 

layer 1 and layer 2, respectively. U2TLA does not use a gray 

region (Fig. 5) for latter assignment. The gray region is defined 

as the region whose x-coordinate spans maximally so that only 

pins of assigned nets and the origin are contained, and y-

coordinate is 1 ≤ 𝑦 ≤ 𝑡 . A horizontal segment that extends 

beyond the gray region may intersect with a vertical segment 

of a net assigned later. In the left figures, the name of an 

assigned net whose horizontal segment extends to the 

outermost is shaded. In the right figures, the name of a net is 

surrounded by a thick frame if it may intersect with a vertical 

segment of an omitted unassigned net, and is surrounded by a 

thin frame if it may not. 

 Here, the behavior of U2TLA is shown using the example 

consisting of 8 nets in which the left pins belong to 

𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, 𝑛8 

and right pins belong to 

𝑛2, 𝑛3, 𝑛8, 𝑛5, 𝑛4, 𝑛1, 𝑛7, 𝑛6 

in the order from the origin. 

 The value of each variable at 𝑡  is shown in TABLE 1. 

Column “Step 2” in TABLE 1 corresponds to the case 

classification shown in Fig. 5. The symbol “*” after the value 

of 𝐿min(𝑡) (𝑅max(𝑡))  represents that a via is required to 

insert to the wire of 𝑛𝑅  (𝑛𝐿) . A routing corresponding to 

U2TLA output is shown in Fig. 6. 

 

 

𝑡 𝑛𝐿 𝑛𝑅 𝑙(𝑛𝑅) 𝐿𝑚𝑖𝑛(𝑡) 𝑟(𝑛𝐿) 𝑅𝑚𝑎𝑥(𝑡) Step 2 

1 𝑛1 𝑛2 −2 0 6 0 (A) 

2 𝑛4 𝑛3 −3 −2 5 6 ∗ (B1) 

3 𝑛5 𝑛8 −8 −3 4 6 ∗ (A) 

4 𝑛6 𝑛7 −7 −8 ∗ 8 6 (A) 

Fig. 4. Variables and functions used in U2TLA 

Step 2(A) 

(A)-1: 0via   (A)-2: 1via   (A)-3: 2via 

Step 2(B) 

(B1)-1: feasible (no via) 

(B1)-2: feasible (right via) 

(B2)-1: feasible (left via) 

(B2)-2: infeasible (right via) 

(B2)-3: infeasible (both via) 

 

Fig. 5. Layer assignment in Step 3 

TABLE 1 

The behavior of U2TLA 

Fig. 6. A routing corresponding to U2TLA output 
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 In the following, the validity of U2TLA is discussed. It is 

obvious from the definition of segments of a net that the 

segments of each net form a wire connecting both pins of the 

net. In the following, it is shown that the obtained routing has 

no conflicts if U2TLA outputs a feasible solution. 

 Let’s consider a situation that the track assignment for track 

1~𝑡 − 1  is finished. It is shown that the following two 

propositions are satisfied. 

(1) The wire of a net assigned to track 𝑡  has no conflicts 

with wires of nets assigned so far. 

(2) The wires of nets assigned to track 𝑡 have no conflicts 

with each other if 𝑡 satisfies feasible condition. 

Note that tracks do not intersect with each other, and that a 

vertical grid line is exclusively used by a net. 

 

Lemma 1: The wire of a net assigned to track 𝑡  has no 

conflicts with wires of nets assigned so far. 

 

Proof: Each segment of net 𝑛𝐿  selected in Step 2 has no 

conflicts with wires of nets assigned so far is shown. 

(1-a) left vertical segment 

The left vertical segment of 𝑛𝐿 is assigned to layer 1 in 

Step 3, and only may has conflicts with horizontal segments 

in layer 1. However, the horizontal segments of all nets 

assigned to track 1~𝑡 − 1 of layer 1 terminate to the right 

of the left vertical segment of 𝑛𝐿. If the horizontal segment 

of a net 𝑛 assigned to the layer 1 does not terminate, then 

it contradicts the net selection in Step 2 since 𝑛𝐿 should be 

selected before 𝑛 . Therefore, the left vertical segment of 

𝑛𝐿 has no conflicts with wires of nets assigned so far. 

(1-b) horizontal segment 

Since wires of nets assigned so far exist in the region 

𝑦 ≤ 𝑡 − 1 , they have no conflicts with the horizontal 

segment of 𝑛𝐿 on 𝑦 = 𝑡. 

(1-c) right vertical segment 

The right vertical segment of 𝑛𝐿 is assigned to layer 2 if 

the segment intersects with a horizontal segment assigned 

to layer 1, and is assigned to layer 1 otherwise. The 

horizontal segments of all nets assigned to track 1~𝑡 − 1 

of layer 2 terminate to the left of the right vertical segment 

of 𝑛𝐿 because of the net selection in Step 2, and have no 

conflicts with the right vertical segment. 

From (1-a), (1-b) and (1-c), it is confirmed that the segments 

of the net 𝑛𝐿 have no conflicts with wires of nets assigned so 

far. Similarly, it can be confirmed that the segments of 𝑛𝑅 

selected in Step 2 have no conflicts with wires of nets assigned 

so far, but the description is omitted here.                

 

Lemma 2: The wires of nets assigned to track 𝑡  have no 

conflicts with each other if 𝑡 satisfies feasible condition. 

 

Proof: The wires of 𝑛𝐿 and 𝑛𝑅 assigned to track 𝑡 have no 

conflicts with each other is shown. The segments that share 

coordinates among the wires of 𝑛𝐿 and 𝑛𝑅 are either (a) two 

horizontal segments or (b) one horizontal and one vertical 

segments.  

(2-a) The horizontal segments of 𝑛𝐿  and 𝑛𝑅  have no 

conflicts with each other because they are assigned to different 

layers. 

(2-b1) The horizontal segment of 𝑛𝐿 (𝑛𝑅) has no conflicts 

with the right (left) vertical segment of 𝑛𝑅(𝑛𝐿) because they 

are assigned to different layers from Step 3.  

(2-b2) The conflict between the horizontal segment of 

𝑛𝐿 (𝑛𝑅)  with the left (right) vertical segment of 𝑛𝑅(𝑛𝐿)  is 

checked in the following. In case that 𝑛𝐿(𝑡) ≠ 𝑛𝑅(𝑡) , they 

have no conflicts because they do not share coordinates. The 

horizontal segment and the vertical segment share coordinates 

only if 𝑛𝐿(𝑡) = 𝑛𝑅(𝑡)  (see Fig. 5(B)). If either 𝑙(𝑛𝑅(𝑡)) <

𝐿min(𝑡)  (Fig. 5(B1)-1,2) or 𝑅max(𝑡) < 𝑟(𝑛𝐿(𝑡)) 

(Fig. 5(B2)-1), then they are assigned to different layers, and 

they have no conflicts with each other. Otherwise, they conflict 

with each other, but 𝑡  does not satisfy feasible condition 

(Fig. 5(B2)-2,3).                                   

Note that a conflict occurred when feasible condition is not 

satisfied can be resolved by inserting the via to the middle of 

the vertical segment between track 𝑡 − 1 and track 𝑡. 

 

Theorem 1: A routing which satisfies the connection 

requirements without conflicts is obtained from the output of 

U2TLA in case that U2TLA outputs a feasible solution. 

 

Proof: It is obvious from Lemmas 1 and 2 that the net assigned 

to track 𝑡 can be realized without conflicts with wires of nets 

assigned so far if the solution is feasible.                 

 

The time complexity of U2TLA is 𝑂(𝑚), since each step 

takes a constant time and iterated 𝑚 times. In case that a net 

is selected in Step 2(B), other assignments may have different 

property on feasibility and the number of vias. 

 The following theorem gives a sufficient condition on 

inputs that have a feasible solution. 

 

Theorem 2: In the U-shaped two-layer routing problem with 

net set 𝑁 , a feasible solution exists if there are no nets 

𝑎, 𝑏, 𝑐, 𝑢 ∈ 𝑁 such that 

𝑙(𝑎) < 𝑙(𝑢) < 𝑙(𝑏), 𝑟(𝑎) < 𝑟(𝑢) < 𝑟(𝑏) 

𝑙(𝑐) < 𝑙(𝑢), 𝑟(𝑢) < 𝑟(𝑐) 

 

Proof: Let’s consider a case that U2TLA outputs an infeasible 

solution. U2TLA outputs an infeasible solution only if 𝑡 does 

not satisfy feasible condition for some track 𝑡. Suppose that 

𝑛𝐿(𝑡) = 𝑛𝑅(𝑡) , 𝑙(𝑛𝑅(𝑡)) > 𝐿min(𝑡) , and 𝑅max(𝑡) >

𝑟(𝑛𝐿(𝑡))  are satisfied for track 𝑡 . Let net 𝑢  be 𝑛𝐿(=

𝑛𝐿(𝑡) = 𝑛𝑅(𝑡)). 

 The left vertical segment of 𝑢  intersects the horizontal 

segments assigned to layer 2 of the track upper than the 

horizontal segment of 𝑢 . There exists a net 𝑎  satisfying 

𝑙(𝑎) < 𝑙(𝑢), and from Step 2, 𝑟(𝑎) < 𝑟(𝑢). 

 The right vertical segment of 𝑢  intersects the horizontal 

segments assigned to layer 1 of the track upper than the 

horizontal segment of 𝑢 . There exists a net 𝑏  satisfying 

𝑟(𝑢) < 𝑟(𝑏), and from U2TLA, 𝑙(𝑢) < 𝑙(𝑏). 

 The left and right pins of a net whose horizontal segment is 

assigned to the same track as of 𝑢 are placed outside of the 

left and right pins of 𝑢 . There exists a net 𝑐  satisfying 
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𝑙(𝑐) < 𝑙(𝑢), 𝑟(𝑢) < 𝑟(𝑐). 

 The existence of nets that contradicts to the prerequisites is 

shown and Theorem 2 is proved.                       

 Fig. 7 shows an example of an infeasible solution. In case 

that the number of nets is four, there are four patterns of pin 

sequences in which the outputs are infeasible. Even in case that 

the net set contains four nets violating the prerequisites of 

Theorem 2, a feasible physical routing may exist (Fig. 8). 

 A solution of the U-shaped two-layer routing problem gives 

a topological routing of the bottleneck channel problem. A 

two-layer topological routing of a bottleneck channel problem 

is obtained by defining a U-shaped two-layer routing problem 

with the same pin sequence along the boundary. In U-shaped 

routing problem, pins are placed on the upper boundary of the 

routing area. A U-shaped routing problem shown in Fig. 6 

corresponds to the bottleneck routing problem shown in Fig. 2. 

A topological routing obtained by U2TLA could be utilized to 

find physical routing of the bottleneck channel problem. 

Note that a topological routing obtained by U2TLA might 

not be fit to a physical routing of a bottleneck channel problem. 

A different topological routing might be obtained if other U-

shaped two-layer routing problem is defined. For example, the 

routing problem shown in Fig. 9 is obtained in which the pins 

are placed on the lower boundary without changing their order 

from the problem shown in Fig. 2. The routing solution shown 

in Fig. 9 is obtained by U2TLA by assigning track from below 

with different net selection order. Two solutions obtained may 

have different track assignments and different the number of 

vias. It is also possible that one is feasible and the other is 

infeasible. This flexibility will help us to have more options 

when considering physical routing of a bottleneck channel 

problem. 

 

 

V. Summary and Conclusions 

 
 In this paper, bottleneck channel routing is proposed to 

reduce the layout area of Analog VLSI. For the two-layer 

bottleneck channel problem with 2-pin net, we proposed 

algorithm U2TLA which obtains a routing in which the wire 

of a net uses at most one via. A feasible physical routing is 

obtained by the track assignment and the layer assignment in 

U2TLA if all pins are placed on the upper boundary of the 

routing area and U2TLA outputs a feasible solution. 

 Our future works are to develop an algorithm for physical 

routing from the topological routing obtained by U2TLA, 

extension to the multi-pin net problem, and extension to three 

or more routing layers. The routing shown in Fig. 2 is obtained 

from the topological routing obtained by U2TLA for the U-

shaped physical routing problem shown in Fig. 6. In physical 

routing, we will be requested to take care the total wire length, 

crosstalk, and so on. 
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Fig. 7. An example of infeasible solution 

Fig. 8. A feasible routing that shows that the converse of 

Theorem 2 does not hold 

Fig. 9.  A routing solution for an input that has the same 

pin sequence along boundary given in Fig. 6. 
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