
Full Hardware Implementation of RTOS-Based Systems
Using General High-Level Synthesizer

Takuya ANDO †,∗ Iori MUGURUMA †,∗∗ Yugo ISHII Nagisa ISHIURA
Kwansei Gakuin University

1 Gakuen Uegahara, Sanda, Hyogo, 669-1330 Japan

Hiroyuki TOMIYAMA Hiroyuki KANBARA
Ritsumeikan University

1-1-1 Noji–Higashi, Kusatsu, Shiga, 525-8577 Japan
ASTEM RI/KYOTO

134 Chudoji Minamimachi, Shimogyo-ku, Kyoto, 600-8813 Japan

Abstract—This article proposes a method for implementing
an RTOS-based system as hardware using a general high-level
synthesizer. Oosako proposed a full hardware scheme where all
the tasks and all the RTOS functions are implemented as hard-
ware. However, it depended on special features of an in-house
binary synthesizer ACAP; a synthesized hardware module has a
stall port by which module’s execution can be suspended, and ac-
cesses to global variables are automatically translated to accesses
to the single memory space without rewriting the source program.
Moreover, the size of the resulting circuits was too large for practi-
cal use. This paper proposes a new architecture that can dispense
with the stall ports and also reduces the size of the resulting cir-
cuits. This paper also presents a wrapper class for global variable
accesses and a style of programs to minimize the rewriting of task
programs. Based on the proposed method, a hardware module for
a reduced version of “sample1” bundled with TOPPERS/ASP3
has been successfully implemented as hardware using Xilinx Vitis
HLS. Moreover, the size of the resulting circuit was 89% smaller
than that by the previous method.

I. Introduction

Owing to the recent advances in information and network
technologies, various new digital devices and services are be-
ing deployed in our everyday life. Accordingly functionalities
implemented in embedded devices are getting more and more
rich and sophisticated. In addition to this, in some areas such
as an unmanned aerial vehicle, autonomous cars, and service
robots, high response performance is also required.

Such real-time systems, where tasks must be processed
within the specified periods in response to input events, are
implemented using a real-time operating system (RTOS). The
RTOS helps designers to implement real-time systems by pro-
viding controllability and predictability of execution time of
concurrent tasks. However, it is getting more and more diffi-
cult to ensure real-time performance as the complexity of the
systems grows.

One of the solutions to this problem is hardware accelera-
tion. There have been many efforts to implement some or all

*Currently with ROHM Co., Ltd., Japan.
**Currently with Honda Motor Co., Ltd., Japan.

functions of RTOSes as hardware [1, 2, 3, 4, 5]. On the other
hand, there have also been some attempts to convert software
tasks into hardware [6, 7] using high-level synthesis [8]. While
these methods implement a part of systems as hardware, [9]
and [10] have implemented a whole system as hardware, which
however only dealt with bare metal systems.

Oosako has proposed a full hardware implementation of
RTOS-based systems [11], where both tasks and RTOS func-
tions are synthesized into hardware by high-level synthesis.
Assuming that the tasks are created statically at compile time,
every task is synthesized into an independent hardware compo-
nent which can run in parallel with the other tasks. The sched-
uler is reduced to a simple controller without ready queues.
Small sample programs based on TOPPERS/ASP31 [11] and
FreeRTOS2 [12] were successfully implemented as hardware.

Although this scheme drastically enhanced response perfor-
mance of systems, there are two issues to be resolved for its
practical use. One is that the scheme depends on an in-house
binary synthesizer ACAP (Assembly Compatible Architecture
Prototyper) [13]. This is because ACAP generates hardware
modules with the stall ports which are convenient for con-
trolling task execution and because ACAP can handle global
shared variables in a natural way. Dependence on this specific
synthesizer heavily limits the applicability of the scheme. The
other issue is that resulting hardware is too large. This is partly
due to the performance of the synthesizer but also due to the
architecture where multiple copies of hardware for RTOS ser-
vices are present across tasks.

This paper proposes a new architecture and a new synthe-
sis method for full hardware implementation of RTOS-based
systems using a general high-level synthesizer. The architec-
ture of the hardware is revised so that duplication of hardware
is eliminated by collecting hardware for services in one place.
In order to make it possible to generate hardware by a gen-
eral high-level synthesizer, a new mechanism for task control
which eliminates the need for the stall ports is proposed. A
wrapper class which makes the handling of global shared vari-
ables easier is also proposed.

Based on the proposed method, a sample program “sam-
ple1” bundled with TOPPERS/ASP3 has been successfully

1https://www.toppers.jp/
2https://www.freertos.org/

SASIMI 2022 ProceedingsA-1

- 2 -

RTOS

task1 task2 taskn...

T1 T2 Tn...

CPU

DMEM

manager

DMEM

Fig. 1. Full hardware implementation of RTOS-based system

synthesized into full hardware by a commercial high-level syn-
thesizer Xilinx Vitis HLS. The resulting circuit size was 89%
smaller than that by the previous method.

II. Full hardware implementation of RTOS-based systems

A. Full hardware implementation

An RTOS (Real-Time Operating System) runs multiple se-
quential programs, called tasks, concurrently. It controls, or
schedules, execution of the tasks based on their priorities so
that required work associated with input events to the system
will be performed within the specified periods.

In [11], a method is proposed that synthesizes a given appli-
cation program written using RTOS system calls into a hard-
ware module which is functionally equivalent to a CPU that
runs the program, as shown in Fig. 1. “task1” through “taskn”
are software tasks running under an RTOS, which are con-
verted into hardware modules T1 through Tn by high-level
synthesis [8]. “Manager” is a dedicated hardware module that
works in place of the RTOS; it controls execution of the tasks
and provides services such as mutexes and data queues.

In this hardware scheme, all the task modules are executed
in parallel as soon as they become ready. The manager controls
the task modules by stall signals. A task module stops when
the stall signal to the task is 1 and runs otherwise. The stall
signal to a task module is generated from the task’s state kept
in the task status register.

Response time of the system will be drastically reduced by
this scheme due to 1) parallel execution of tasks (no CPU wait),
2) no overhead regarding scheduling nor context switching,
and 3) hardware acceleration.

On the other hand, there are limitations to this scheme. First
of all, all the tasks must be statically created (at compile time).
The manager can not handle many tasks so that the number
of tasks should be at most 16. In order to avoid interference
among RTOS services, service calls are processed one by one
(sequentially), in spite that the tasks are executed in parallel.

B. Oosako’s architecture

Fig. 2 illustrates the architecture of resulting hardware in the
Oosako’s scheme [11].

T1, T2, and T3 are hardware modules for tasks, which are
henceforth called task modules. The manager has a status reg-
ister for each task, which contains the state, the priority, the
timer, etc. regarding the task. The manager controls execution
of the task modules by the stall signals; a task module runs nor-
mally when the stall signal is 0, and holds its execution when

act_tsk chg_pri
ulc_mtxloc_mtx

T1

slp_tsk
ulc_mtxloc_mtx

T2

slp_tsk chg_pri

T3

T1 status T2 status T3 status

arbiter

DMEM

addr data stall

manager

stall stalladdr addr data

task1 task2 task3

Fig. 2. Architecture of resulting hardware in Oosako’s scheme [11]

1: ER act_tsk(ID tskid) {
2:
3: if (IS_TASK_CONTEXT && tskid == TSK_SELF) {
4: tskid = TOPPERS_HW_SELF_ID;
5: }
6:
7: if (tskid <= 0 || TNUM_TSKID < tskid) {return E_ID;}
8: volatile T_RTSK *target =
9: &(task_status[tskid-1].rtsk);
10:
11: _loc_service_call();
12:
13: uint_t actcnt = target->actcnt;
14:
15: ER rc = E_OK;
16: if (glob_status.f_cpu_locked) {rc = E_CTX;}
17: else if (actcnt >= TMAX_ACTCNT) {rc = E_QOVR;}
18: else if (target->tskstat != TTS_DMT) {rc = E_QOVR;}
19: else {target->tskstat = TTS_RDY;}
20:
21: _unl_service_call();
22:
23: return rc;
24: }

Fig. 3. Rewritten code of act tsk

the stall signal is 1. The stall signal of a task module is gen-
erated from the status register of the task; the stall signal is set
to 0 if the task status is in the Running state, and set to 1 other-
wise. Note that when a task become Ready then the manager
forces the state of the task to Running in the next clock cycle.

The task modules read and write DMEM (data memory)
through the manager. Simultaneous accesses to DMEM are
sequentialized by the arbiter. The task status registers are
mapped in the address space, so that task modules may access
those registers by load/store operations.

A task module consists of the hardware for the task itself and
the hardware to execute RTOS services which the task calls.
In this figure, task1 is assumed to call four services (act tsk,
chg pri, loc mtx, and unl mtx). They are synthesized into a
single task module by high-level synthesis.

Since the status registers can be accessed as variables, the
original source code of the service calls in the RTOS can be
used as inputs to high-level synthesis with a little modification.
For example, a service call act tsk of TOPPERS/ASP3, which
changes the state of a specified task to Ready, can be rewritten
as shown in Fig. 3. In line 19, it assigns TTS RDY, the value
for Ready, to the task status register. Most of the other lines
are for error handling. Lines 11 and 21 are lock and unlock to
avoid parallel execution of other service calls.

- 3 -

Oosako’s scheme assumes the use of a specific synthesizer
ACAP [13]. It is a binary synthesizer which generates hard-
ware from MIPS R3000 binary codes. It can be also used as
a high-level synthesizer by feeding binary codes generated by
GCC from C or C++ programs. ACAP is used for two reasons.
ACAP generates an explicit stall port for each hardware mod-
ule. The state transition of the module is disabled via this port
at any time, which the manager hardware can make full use of
to control tasks. The other reason is that ACAP is convenient
to handle shared (global) variables. ACAP maps all the global
variables in the memory space and enables task modules to ac-
cess the variables via address and data ports.

C. Circuit size and universality issues

Although the full hardware scheme enables implementation
of extremely fast real-time systems, there are two issues to be
resolved; the huge circuit size and dependence on the specific
synthesizer.

In the preliminary implementation in [11], the resulting cir-
cuit from a simple sample bundled with TOPPERS/ASP3 con-
sumed 40,000 LUTs (Xilinx Artix-7), which is impractically
large. One reason for this is the low performance of ACAP,
but there is an architectural issue; each task owns hardware for
necessary RTOS services, which results in multiple copies of
the same hardware that are never executed in parallel.

Moreover, the dependence on ACAP is a hurdle for broad
use. Since user codes and the body of RTOS services are
usually written in C or C++, there should be no need for bi-
nary synthesis. However, not all the high-level synthesizer
generate hardware modules with the stall ports, and there is
no scheme to describe the stall-at-anytime behavior in C or
C++. How to write accesses to global shared variables is also
an issue. Though general high-level synthesizers may generate
hardware modules with address and data ports to access ex-
ternal variables, this involves the need for rewriting of the user
codes, which is troublesome if there are many global variables.

III. Full hardware implementation by general synthesizer

A. Overview

This paper proposes a new architecture and a new synthe-
sis scheme to realize full hardware implementation of RTOS-
based systems using a general high-level synthesizer. The tech-
nical highlights are as follows:

1. Duplication of hardware to provide RTOS services is
eliminated by moving the service hardware from the tasks
to the manager.

2. Execution of task hardware modules is controlled via
usual read ports instead of the stall ports. The pause of
the tasks is realized as wait for service completion.

3. User code rewriting for shared variable accesses is mini-
mized by defining a wrapper class for the global variable
access and functions-inside-functions.

{
...
chg_pri(TSK1, LOW_PRI);
...

}

(a) Service call from a task

#define chg_pri(tskid, tskpri) \
_chg_pri(tskid, tskpri, _F, _A0, _A1)

ER _chg_pri(ID tskid,
PRI tskpri,
volatile int* const _F,
volatile int* const _A0,
volatile int* const _A1){

*_A0 = tskid;
*_A1 = tskpri;
ap_wait(); // synchronization
*_F = SERV_CTRL_TSK | METHOD_CHG_PRI;
ap_wait(); // wait for the result
return *_A0;

}

(b) Body of service call (stub)

Fig. 4. C codes regarding service call

B. Centralized service

Hardware to provide RTOS services is moved from the tasks
to the manager. Fig. 5 (a) and (b) shows the previous and the
new architectures, respectively. In the new architecture, the
RTOS services are executed by the manager not by the task
modules. This eliminates duplication of hardware.

A task requests a service to the manager by writing the ID of
the service and necessary arguments into the control registers
F and A for the task. The manager passes the request to the
service module in charge of the request. When there are mul-
tiple requests at the same time, the request arbiter (RA) selects
one of them according to the priorities of the tasks that issued
the requests. The other requests wait for their turn. The called
service module processes the request by accessing status reg-
isters and memories if necessary, and returns the results to the
manager, which are passed back to the task via the register A.

Although the (new) service modules could be generated by
high-level synthesis, most of them can be manually designed
in RTL since they usually result in simple circuits with a few
or several states.

Note that the access to shared variables is now dealt with as
one of the services. This is partly for unifying the arbiter for
memory access to the arbiter for services, but also for a new
task control scheme for eliminating the stall ports, as described
in the next subsection.

An example of C codes regarding a service call in the new
scheme is shown in Fig. 4. (a) is a caller code (a user code),
which needs no modification. (b) is the body of chg pri,
which writes two arguments and the service ID to * A0, * A1
and * F that are port variables connected to the control reg-
isters. It waits for the return code to be written into * A0 by
the manager. ap wait() is a synthesizer specific macro that
instructs that subsequent statements must not be scheduled be-
fore the preceding statements. The stub function (chg pri,
in this case) may be inline expanded into the task body, which
becomes an input to high-level synthesis.

- 4 -

C. Task control scheme

In order to realize the task control without using stall ports,
a new control policy is introduced. That is:

• Tasks are allowed to run even when they are not in the
Running state.

• However, only the service requests from running tasks are
processed. Thus, when a non-running task makes a ser-
vice call, it waits until it becomes Running and the service
is processed.

Non-running tasks are allowed to run to update their local
states but could not affect the other tasks nor the output of the
system because all the system calls and accesses to the shared
variables are blocked. This realizes equivalent system seman-
tics as the one with the stall ports.

Fig. 5 (c) shows how this scheme is implemented in hard-
ware. Instead of sending the stall signals to the task modules,
they are used to block the service requests so that requests from
non-running tasks can not participate in the arbitration until
they become Running again.

D. Wrapper class for shared variable accesses

Accesses to shared variables are dealt with in the same way
as service calls. Fig. 6 shows stub functions M READ int and
M WRITE int to request read and write integer data, respec-
tively.

Given a task code (user code) as shown in Fig. 7 (a), it must
be converted to a code in (b) to be an input to high-level syn-
thesis. Since this rewriting across all the tasks is a burden for
users, a wrapper class to reduce rewriting is defined. As shown
in (c), users only have to declare the variables as of the shared
type (G int). The wrapper class can be defined as in Fig. 8.

There remains a technical issue in translating user codes to
synthesizable codes. Generally, a task is composed of mul-
tiple functions, among which the variables to access control
registers and the class objects of shared variables must be
shared. We make this possible by converting task functions
into functions-inside-functions in a main function.

For example, suppose a task program shown in Fig. 9 (a) is
given. It declares global (shared) variable x and y, and two
functions sub and tsk, where tsk is the main function. This
code is converted into (b). A new function tsk main is a wrap-
per function which is synthesized into a task module. It has
three arguments, which will result in the external ports. Global
variables x and y are converted into instances of the wrapper
class. Functions sub and tsk are defined as functions-inside-
functions, from which F, A0, A1, x, and y can be accessed
like global variables. Note that no change is needed for the
bodies of sub and tsk so this conversion may be done auto-
matically.

IV. Experimental Result

Based on the proposed method, a sample program “sam-
ple1” bundled with TOPPERS/ASP3 has been implemented
as hardware. This program is composed of a main

act_tsk chg_pri
ulc_mtxloc_mtx

slp_tsk
ulc_mtxloc_mtx

slp_tsk chg_pri

T1 status T2 status T3 status

request arbiter (RA)

DMEM

addr data stall

manager

stall stalladdr addr data

T1 T2 T3task1 task2 task3

(a) Previous architecture

F A T1 status F A T2 status F A T3 status

request arbiter (RA)

lod_int
str_int

loc_mtx
unl_mtx

act_tsk
chg_pri
slp_tsk

DMEM

T1 T2 T3

req res stall

manager

req res stall req res stall

task control
mutex shared

variable

task1 task2 task2

(b) Centralized service

F A T1 status F A T2 status F A T3 status

request arbiter (RA)

lod_int
str_int

loc_mtx
unl_mtx

act_tsk
chg_pri
slp_tsk

DMEM

stall stall stall

req res

manager

req res req res

task control
mutex shared

variable

T1 T2 T3task1 task2 task2

(c) Elimination of stall ports

Fig. 5. Proposed architecture

task MAIN TASK, a task to handle exception EXC TASK,
and three concurrent tasks TASK1, TASK2, and TASK3.
MAIN TASK receives a message from a serial port and calls
the following services:

act tsk, can act, ter tsk, chg pri, get pri, wup tsk,
can wup, rel wai, sus tsk, rsm tsk, loc cpu, unl cpu

At this point, the alarm, cyclic and interrupt handlers have not
been implemented yet, and the service calls related to the han-
dlers were deleted.

The service modules and the managers are manually de-
signed in Verilog HDL and logic synthesized by Xilinx Vivado
(2020.2) targeting Xilinx FPGA Artix-7 (xc7a100tcsg324-3).

- 5 -

ER M_READ_int (int addr,
volatile int* const _F,
volatile int* const _A0){

*_A0 = addr;
ap_wait();
*_F = SERV_GRW | METHOD_READ;
ap_wait();
return *_A0; // read data

}

ER M_WRITE_int (int addr,
int value,
volatile int* const _F,
volatile int* const _A0,
volatile int* const _A1){

*_A0 = addr;
*_A1 = value;
ap_wait();
*_F = SERV_GRW | METHOD_WRITE;
ap_wait();
return *_A0; // notification of completion

}

Fig. 6. Stub functions for shared variable accesses

int x;
int y;

{
...
x = 1;
y = x + 2;
...

}

(a) Original task code

#define X_ADDRESS 0x80000000
#define Y_ADDRESS 0x80000004

{
...
M_WRITE_int(X_ADDRESS, 1);
M_WRITE_int(Y_ADDRESS, M_READ_int(X_ADDRESS) + 2);
...

}

(b) Modified code

{
G_int x(_F, _A0, _A1);
G_int y(_F, _A0, _A1);
...
x = 1;
y = x + 2;
...

}

(c) Code using wrapper class

Fig. 7. Task codes for shared variable accesses

Task modules are synthesized by ACAP (2016.10) [13] for the
methods in [11] and Xilinx Vitis HLS (2020.2) for the pro-
posed method.

The size of the synthesized circuit is listed in Table I (a),
where “#LUT” and “#FF” are the numbers of LUTs and
flipflops, respectively. The size of the manually designed mod-
ules (“top” through “manager”) are about the same. On the
other hand, the size of the task modules is drastically reduced
by the proposed method. This is partly due to the elimination
of duplicated service hardware but mainly owing to the perfor-
mance of the high-level synthesizer.

Table I (b) shows the critical path delay of the circuits, which
is also reduced by the proposed method.

static int addr = 0x80000000;

class G_int{
const int address;
volatile int* const _F;
volatile int* const _A0;
volatile int* const _A1;

public:
G_int(
volatile int* const f,
volatile int* const a0,
volatile int* const a1

) : address(addr), _F(f), _A0(a0), _A1(a1) {addr += 4;}

operator int () { return M_READ_int(address, _F, _A0); }

G_int& operator = (int value) {
M_WRITE_int(address, value, _F, _A0, _A1);
return *this;

}

G_int& operator = (G_int& x) {
*this = (int) x;
return *this;

}
};

Fig. 8. Wrapper class for shared variables

int x;
int y;

void sub(){
x = x + 3;
y = y + x;

}

void tsk(){
x = 1;
y = x + 2;
chg_tsk(TSK1, LOW_PRI);
sub();

}

void tsk_main(
volatile int* const _F,
volatile int* const _A0,
volatile int* const _A1
){

G_int x(_F, _A0, _A1);
G_int y(_F, _A0, _A1);

auto sub = [=]() mutable {
x = x + 3;
y = y + x;

};

auto tsk = [=]() mutable {
x = 1;
y = x + 2;
chg_tsk(TSK1, LOW_PRI);
sub();

};

tsk();
}

(a) Original task code (b) Converted code for synthesis

Fig. 9. Conversion to synthesizable code

The response performance of the circuits are summarized in
Table II. “#cycle” is the number of clock cycles each service
takes after a task calls the service until the task receives the
return code, and the “latency” is the product of “#cycle” and
the critical path delay. All the task control related services are
executed well in 150ns, which is fast enough even for extreme
applications.

V. Conclusion

This paper has proposed a new method for full hardware
implementation of RTOS-based systems using a general high-
level synthesizer. It is based on migration of service hardware
from tasks to the managers, a new task control scheme, and
use of a wrapper class for shared variable accesses. The new
scheme has drastically reduced the resulting circuit size.

- 6 -

TABLE I
Result of synthesis of sample1

(a) Circuit size

method in [11]
(ACAP)

proposed method
(Vitis HLS)

module #LUT #FF #LUT #FF
top 368 5 0 0
arbiter 383 5 - -
serv grw – – 300 1,025
serv ctrl tsk – – 990 146
manager 4,079 2,672 2,394 3,041
TASK1 5,520 929 103 218
TASK2 7,567 925 104 219
TASK3 7,189 965 104 219
MAIN TASK 6,199 943 323 559
EXC TASK 8,003 939 8 8
total 39,313 7,383 4,326 5,435

(b) Critical path delay [ns]

method in [11]
(ACAP)

proposed method
(Vitis HLS)

13.108 9.783

HLS: ACAP (2016.10), Xilinx Vitis HLS (2020.2)
Logic synthesizer: Xilinx Vivado (2020.2)
Target: Xilinx Artix-7 (xc7a100tcsg324-3)

TABLE II
Response performance of services

method in [11] proposed method

service call #cycle
latency

[ns] #cycle
latency

[ns]
act tsk 23 301.3 10 97.8
wup tsk 9 125.4 10 97.8
ext tsk 12 157.2 10 97.8
ras ter 10 139.3 9 88.1
ter tsk 8 111.5 7 68.5
slp tsk 16 209.6 15 146.7

We have already implemented service modules for synchro-
nization and communication, such as mutexes, event flags, and
data queues [14], and we are now working on dynamic mem-
ory allocation such as memory pools. Our first target is TOP-
PERS/ASP3, but we are now working on adapting our scheme
to support FreeRTOS. At this point, the manager module is
manually designed. We are also working on automatic gener-
ation of Verilog HDL codes for the manager for an arbitrary
number of tasks and services. Using this generator, we expect
that we can identify bottlenecks and improve or optimize the
architecture of the manager module so that more than 16 tasks
can be handled.

Acknowledgments

Authors would like to express their appreciation to Mr. Takayuki
Nakatani (formerly with Ritsumeikan Univ.), Mr. Shimpei Tamura
(formerly with Kwansei Gakuin Univ.) for their discussion and valu-
able comments. We would also like to thank to the members of
Ishiura Lab. of Kwansei Gakuin Univ. This work was partly sup-
ported by JSPS KAKENHI under Grant Nos. 19H04081, 20H00590,
and 21K19776.

References

[1] Y. Cho, S. Yoo, K. Choi, N-E Zergainoh, and A. A. Jerraya:
“Scheduler implementation in MPSoC design,” in Proc. ASP-
DAC 2005, pp. 151–156 (Jan. 2005)

[2] M. Vetromille, L. Ost, C. A. M. Marcon, C. Reif, and F. Hes-
sel: “RTOS scheduler implementation in hardware and software
for real time applications,” in Proc. RSP ’06 pp. 163–168 (June
2006).

[3] T. Nakano, Y. Komatsudaira, A. Shiomi, and M. Imai: “Perfor-
mance evaluation of STRON: A hardware implementation of a
real-time OS,” in IEICE Trans. Fundamentals, vol. E82-A, no. 11
pp. 2375–2382 (Nov. 1999).

[4] N. Maruyama, T. Ishihara, and H. Yasuura: “An RTOS in hard-
ware for energy efficient software-based TCP/IP processing,” in
Proc. SASP 2010, pp. 58–63 (June 2010).

[5] P. Kohout, B. Ganesh, and B. Jacob: “Hardware support for real-
time operating systems,” in Proc. CODES+ISSS ’03, pp. 45–51
(Oct. 2003).

[6] S. Shibata, S. Honda, H. Tomiyama, and H. Takada: “Advanced
system-builder: A tool set for multiprocessor design space ex-
ploration,” in Proc. ISOCC 2010, pp. 79–82 (Nov. 2010).

[7] Y. Ando, S. Honda, H. Takada, M. Edahiro: “System-level design
method for control systems with hardware-implemented interrupt
handler,” IPSJ Journal of Information Processing, vol. 23, no. 5,
pp. 532–541 (Sept. 2015).

[8] D. D. Gajski, N. D. Dutt, A. C-H Wu, and S. Y-L Lin: High-Level
Synthesis: Introduction to Chip and System Design, Kluwer Aca-
demic Publishers (1992).

[9] N. Ito, N. Ishiura, H. Tomiyama, and H. Kanbara: “High-level
synthesis from programs with external interrupt handling,” in
Proc. SASIMI 2015, R1-3, pp. 10–15 (Mar. 2015).

[10] N. Ito, Y. Oosako, N. Ishiura, H. Tomiyama, and H. Kanbara:
“Binary synthesis implementing external interrupt handler as in-
dependent module,” in Proc. RSP 2017, pp. 92–98 (Oct. 2017).

[11] Y. Oosako, N. Ishiura, H. Tomiyama, and H. Kanbara: “Synthe-
sis of full hardware implementation of RTOS-based systems,” in
Proc. RSP 2018, pp. 1–7 (Oct. 2018).

[12] W. Nakano, Y. Shinohara, and N. Ishiura: “Full hardware imple-
mentation of FreeRTOS-based real-time systems,” in Proc. TEN-
CON 2021, pp. 435–440, (Dec. 2021).

[13] N. Ishiura, H. Kanbara, and H. Tomiyama: “ACAP: Binary syn-
thesizer based on MIPS object codes,” in Proc. ITC-CSCC 2014,
pp. 725–728 (July 2014).

[14] H. Minamiguchi, M. Nakahara, Y. Ishii, Y. Shinohara, I. Mugu-
ruma, and N. Ishiura: “Hardware RTOS services for full hard-
ware implementation of RTOS-based systems,” in Proc. SASIMI
2022 (Oct. 2022).

- 7 -

