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Abstract— With the rapid progress in artificial in-

telligence (AI) technology, the number of machines

that have been designed to interact with human be-

ings has been steadily increasing. However, the re-

sponses of such machines to human interactions are

often excessively uniform. The purpose of our study

is to incorporate the variations that occur during chip

manufacturing into machine learning and give own in-

dividuality to AI-based robots. In this paper, reser-

voir computing architecture using Ternary Content

Addressable Memory with Individuality is developed

and learning is performed using voice data, which is

a complicated waveform. It is found that the error of

the average of all data between 10 chips is 140% at

the maximum. Voice data learning results have indi-

viduality outputs.

I. Introduction

Artificial intelligence (AI) technology, which has ad-
vanced rapidly, is expected to contribute to resolving a
wide variety of social problems in fields such as human re-
lationships, overtime work, and decline in production ca-
pacities. For example, AI-implemented robots have been
developed to provide care for elderly people and serve
guests in restaurants [1], [2]. However, the communica-
tions expressed by such robots in response to human in-
puts are often excessively uniform because they are de-
signed to fulfill their roles precisely as programmed. Fur-
thermore, AI-based robots can acquire individuality after
learning process, however, teaching and learned data can
be copied to other robots. It is difficult to seem to obtain
personal like a human.
To overcome these problems, a Ternary Content Ad-

dressable Memory with Individuality (ITCAM) [3]-[5],
has been developed for generating search result with LSI
intrinsic manufacturing variations. In this study, a Reser-
voir Computing (RC) machine learning architecture [6] is
combined with the ITCAM for realizing Individual robots.
The RC is easy to make implement to hardware and not
to be changed the weight in the middle layer. The pro-
posed architecture is called the ITCAM-based Reservoir
Computing Architecture (IRC) [7]. For verifying the IRC

capability, voice learning process implements on the IRC
with 10 FPGA chips.

II. Related work

This paper shows results some reservoir computing re-
lated works. The RC is proposed early 2000s [8]. This ar-
chitecture can learn time series data, such as audio wave-
form. Recently, the RC gains exposure for improving se-
curity [9]. The use of sustainable and renewable energy
has been emphasized worldwide. However, it is necessary
to improve the security capability for the smart grid of
wind power generation or solar power plants against cy-
ber attacks. The smart grid is a power grid that can be
controlled and optimized from both the supply side and
the demand side [10]. Therefore, the RC, which has a
simple training method and used random data for mid-
dle layer weight, is focused on to protect these smart
grids. As a result, when the RC-based attack detection is
used several attacks size, the attack response rate of the
RC closes to 100%. Moreover, it is more resistant than
the Multi Layer Perceptron (MLP) and the Support Vec-
tor Machines (SVM) methods in various attack detection
methods.
The RC architecture can also be used as a climate

prediction tool [11]. The Linear Inverse Modeling (LIM),
which is a traditional predicting weather system, decides
weather condition by checking to some important. This
paper compares the performance of the LIM approach
with the RC. In results, both the LIM approach and
the RC have the same predictive ability when the large
amount of training data is prepared, however the RC
has better performance when the training data is lim-
ited. Thus, the RC is superior to the LIM by calculat-
ing the Normalized Root Mean Square Error (NRMSE),
which the RC is a quarter of the LIM approach and the
Anomaly Correlation Coefficient (ACC) of RC is doubled
of the LIM approach. However, it is difficult to optimize
the RC, and the pre-fixed weight of reservoir layer makes
the prediction accuracy. It is needed to control the pa-
rameter.
From these studies, for utilizing the RC capability to

prepare pre-fixed random data, we have proposed to ob-
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Fig. 1. Block diagram of the ITCAM

tain unique data from LSI chips. Because the data re-
sulting from these chip variations are physically irrepro-
ducible and always unique, they can then be used to
mimic the characteristics of human individuality.

III. ITCAM-based Reservoir Computing
Architecture

In this section, the ITCAM-based Reservoir Computing
Architecture (IRC) is described in detail.

A. ITCAM

The ITCAM is a novel type of content addressable
memory that makes it possible to reflect diverse search
results by manufacturing variations in LSI chips [3]-[5].
Variations are different from each chip. Furthermore, The
ITCAM can store quantified manufacturing variations in
masking register, and it can output different matching ad-
dress in situations when same search data are input. A
block diagram of the ITCAM package is shown in Fig.
1. When the Gray code mode signal, Delay variation ac-
quisition signal, input data, search data, and mask data
are input ports. The ITCAM performs operations such
as searching for word blocks, which are internal storage
area. The match result and matching address are output
ports.

B. ITCAM-based Reservoir Computing

In our method, the ITCAM-based Reservoir Comput-
ing (IRC) is consisted of reservoir computing architecture
and the ITCAM [7]. Searching result by variation data
obtains from the ITCAM is used for pre-fixed weights in
the reservoir layer. In this paper, the IRC has the ITCAM
layer (8 bits × 8 entries),reservoir layer (M neurons), out-
put layer, and input layer, which contains input data and
teach data. A block diagram of the IRC is shown in Fig.
2.
Since we can select the number of neurons (M) in reser-

voir layer and input data size (insize), each neuron in

Fig. 2. Block diagram of the ITCAM-based RC architecture

Fig. 3. Process of making voice data to teach data

reservoir layer can receive the ITCAM data for pre-fixed
weights. All neurons must be connected to the other neu-
rons. In this paper, we connect neurons like a ring, these
neurons can receive all data from the other neurons. For
verifying the IRC capability, the IRC is developed Verilog-
HDL language and simulated by Xilinx ISE 14.7 design
suite.

IV. Experimentation for Voice Learning

In order to verify the operational capabilities of our pro-
posed IRC, complex waveform and time-series data in the
form of voice-recorded Japanese syllabary from “A” to
“Nn” (except for “Wo”) were learned by the IRC. The
recorded voice data were then modified to wave teach
data by fast Fourier transform (FFT) using the MAT-
LAB programming and numeric computing platform. In
this process, each data was multiplied by about 400 for
representing waveform in detail. We choose 24 sampling
frequencies. The number of neurons was set to 8, and the
input size was set to 8 bits. An overview of these processes
is shown in Fig. 3.
Voice data waves for teach data are shown in Fig. 4.

Input data is sine wave data shown in Fig. 5.

Table I shows reservoir layer weight values [7], obtained
from 10 types of FPGA chips (8 bits × 8 entries) via
ITCAM. The Xilinx Spartan6 XC6SCL160 FPGA chip
us used in this study. In our experiments, the 8 output
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TABLE I
Reservoir layer weight values.

TABLE II
Relative Errors of “Ta” and “Ri”[%]

data from the output layer are averaged after one learning
process.

V. Experimentetal Results

From teaching process with all voice data, 10 chips re-
sults are shown in Fig. 6. In order to evaluate each result,
the absolute relative error was calculated using the follow-
ing equation.

Relative error =

∣∣∣∣ 1− result

teach data
× 100

∣∣∣∣ [%]

A. All Chips Verification

The verification results for all chips show larger values
than the teach data, because the values of 2 of the 8 neu-
rons are twice those of the other neurons. Therefore, it is
considered that the obtained value is multiplied by 1.25.
Thus, we multiply all averages by 0.8 for changing neuron
values.
Moreover, such as “Ta” and “Ri” from all chips are

shown in Table II. All of these looks very different from
the teach data.

Chip 1 result of “Ri” is 1764%, which is difficult to
represent as “Ri”. This seems to be due to input data
and teach data incompatibilities.

Fig. 4. Voice data wave

Fig. 5. Inputed sine wave

Fig. 7. Up: input data of “Ta”, Under: input data of “Ri”

As a countermeasure, the IRC learning for “Ta” and
“Ri” was performed again using the input data shown in
Fig. 7. Although these data were made from the same
voice data, the results were smaller than their teach data.

From the obtained result, we found that our proposed
IRC could improve the relative errors, as shown in Table
III.

The relative error of this second learning is 8%, thereby
indicating that taking input data and teach data from the
same data drastically improves the IRC learning ability.

TABLE III
Errors of “Ta” and “Ri”[%]
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Fig. 6. Voice data learning results of all chips. The vertical and horizontal axes show the amplitude and frequency [Hz], respectively.
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Fig. 8. Maximum [%], minimum [%], average[%], median[%],
errors of 100% and over, errors of 10% or less, and the exemplary
and personal results for each chip.

B. Individual Chip Verification

Next, we will give detailed explanations of relative er-
rors for each chip. Table 8 shows the maximum, min-
imum, average, and median values. Note that errors of
100% and over, 10% or less, and exemplary and personal
waves are included.

Chip 1

The Chip 1 result is shown in Table 8-(a), where it can
be seen that Chip 1 has the second-largest error and only
one result that is less than 10%. However, the median
data value is relatively small. The results for “Ka”, “Ko”,
“Ne”, “Ha”, “Mu”, and “Ma” show good wave shapes.

Chip 2

The Chip 2 result is shown in Table 8-(b). Although the
average value is less than 100%, the median value, which
is 30, is higher than all the other chips. In addition, “Se”,
“Ta”, “Me”, “Ri”, and “Wa” are higher than 100%.

Chip 3

The Chip 3 result is shown in Table 8-(c), where it can
be seen that “Ta” and “Ri” are over 100% and the av-
erage is below 50. Additionally, “Ki”, “Chi”, “Ne”, and
“Hu” show exemplary waves, thereby indicating excellent
learning results for this chip.

Chip 4

The Chip 4 result is shown in Table 8-(d). In this case,
the maximum error is 1471%, which is the third-largest
value. This chip has eight results that are over 100% (“I”,
“Shi”, “Ta”, “No”, “Me”, “Ri”, “Re”, and “Wa”) but it
also has four results (“Ko”, “Ha”, “Mu”, and “Ku”) that
are less than 10%. Additionally, the difference between
the average and median values is large.

Chip 5

The Chip 5 result is shown in Table 8-(e), where it can be
seen that this chip has the smallest maximum error data
and an average and median value difference of just 10%.
Additionally, while results of less than 10% are noted for
“Ga”, “Mi”, and “Ra”, only “Ta” and “Ri” are the per-
sonal waves.

Chip 6

The Chip 6 result is shown in Table 8-(f). This chip can
achieve stable results in cases nor involving weak learn-
ing because it has just three errors over 100% and five
errors below 10%. However, exemplary waves were only
observed for “Chi”, “Ne”, “Hi”, and “Hu”.

Chip 7

The Chip 7 result is shown in Table 8-(g). For this chip,
there are only three syllables over 100%. On the other
hand, the average percentage is 51, which is the third-
largest value observed. The chip’s exemplary waves are
“Chi” and “Me”, and its personal waves are “I”, “Ta”,
“Ri”, and “Ya”.

Chip 8

The Chip 8 result is shown in Table 8-(h). This chip has
seven results over 100% and just one result that is less
than 10%. In addition, the average percentage is over
100%. From these results, we can say that Chip 8 showed
the most effective learning of all the chips tested.
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Chip 9

The Chip 9 result is shown in Table 8-(i), where it can
be seen that its maximum percentage is the second to the
lowest of all chips tested. On the other hand, with a mini-
mum of 3%, which is smaller than all the others, it can be
said that Chip 9 has exemplary learning characteristics.

Chip 10

Result of chip 10 is Table 8-(j). The Chip 10 result is
shown in Table 8-(j). In this case, the maximum percent-
age is smaller than the others except for Chips 5 and 9.
Furthermore, only one result (“Mu”) is less than 10%.

From these results, we can conclude that each chip
are implemented with unique characteristics. In addition,
while all median percentages are about 30%, larger aver-
ages often have some larger errors. In conclusion, weight
variations in the middle layer produce different results in
each chip and thus create output individual.

VI. Conclusions

This paper shows machine learning results achieved by
using the individualistic values of LSI chips for reservoir
layer weight, we found that even if the same teach data
are used, exemplary waveforms can be achieved for each
chip by changing the weight. In addition, we found that
even though the shape of the obtained personal waveforms
differs depending on the chip, each chip will provide some
exemplary results. In the future, we will continue to study
learning data and strive to clarify individual chip charac-
teristics.
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