
Efficient Hardware Architecture for Taylor-Series Expansion

Calculation Using Distributed Arithmetic with Term Division

Xaybandith Hemthavy1, *, Jianglin Wei1, Shogo Katayama1, Anna Kuwana1, Haruo Kobayashi1, Kazuyoshi Kubo2

1 Dept. of Electrical Engineering and Informatics, Gunma University, Gunma 376-8515, Japan
2 Oyama National College of Technology, Tochigi 323-0806, Japan

* T221D074@gunma-u.ac.jp

Abstract - This paper describes the digital arithmetic that reduces

the calculation and hardware (logic circuits and memory) for

Taylor series expansion calculation by applying the distributed

(bit-serial) arithmetic with the proposed term division method.

The distributed arithmetic (DA) is a multiplier-less approach for

calculating multiply-accumulate (MAC) operation, but its direct

application to the Taylor-series expansion calculation still

demands almost the same number of multiplications as the direct

calculation and additionally large size Look Up Table (LUT);

hence it is useless. Then we propose the term division method

which can reduce the number of multiplications and the LUT size

significantly. Further, we found that the optimal number of the

term division is approximately the square root of the number of

the Taylor series expansion terms.

I. Introduction

Digital electronic devices are getting smaller and low power

in these days, and many multiply-accumulate (MAC)

operations are often used there [1] . The distributed arithmetic

(DA) is often used for MAC operations without multipliers,

and hence it is small circuit and low power. It has been used in

adaptive filter (ADF) using least-mean-square (LMS)[2]-[9] .

Taylor series expansion is a popular approach to calculate

various functions effectively in digital signal processing [10]-[13]

and it also uses the MAC operations. In this paper we

investigate the application of the DA to the Taylor-series

expansion calculation. Direct application of the DA needs

large memory but the number of the required multiplication is

not reduced. Then we propose here the term division method

for the DA application of the Tayler-series expansion

calculation. Its principle and verification with some examples

are shown.

ⅠⅠ. Taylor Series Expansion

Taylor series expansion is defined as following:

𝑓(𝑥) = 𝑓(𝛼) +
𝑓′(𝛼)

1!
(𝑥 − 𝛼) +

𝑓′′(𝛼)

2!
(𝑥 − 𝛼)2 + ⋯ (1)

Suppose that 𝛼 = 0 , 𝑓(𝑥) has 10 terms, and each

coefficient is given by 𝑎𝑛, Eq. (1) yields to the following:

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎9𝑥9 (2)

Rearrange Eq. (2) as shown in Fig. 1 to multiply 𝑥

sequentially, and then we see that there the number of

multiplications is 9 and also the number of additions is 9.

Notice that in many cases, the calculation and hardware

bottleneck is the multiplication.

Fig. 1: Direct calculation of Taylor-series expansion.

III. Distributed Arithmetic

The DA performs the MAC calculation without multipliers

and hence it can reduce the hardware amount. Fig. 2 shows the

DA circuit composed of a Look-Up Table (LUT), a one-bit-

right-shifter, an adder and registers. As an example, consider

the following calculation:

𝑦 = ℎ0𝑥0 + ℎ1𝑥1 + ℎ2𝑥2 (3)

Suppose that the inputs of 𝑥0 , 𝑥1 , 𝑥2 in binary format are

given as follows:

𝑥0 = 11.1, 𝑥1 = 11.0, 𝑥2 = 10.1.

In Fig. 2, these are provided as “address”, and the calculation

result 𝑦 is obtained as “Out”. Now prepare an LUT so that

each sum comes from coefficients at each term where the

address is “1” in Fig.3. As shown in Fig. 3, calculate sum of

each address and multiply
1

2
 every time when doing one-bit-

right-shift to next digit, repeatedly from LSB to MSB in a bit-

serial manner. At the end, define 𝑏 as the number of integer

bits and (virtually) multiply 2𝑏 or perform b-bit left-shift to

correct the position of decimal point. Notice that in many

actual implementation cases, there is no need for

multiplication or bit-shift for the decimal point correction, but

only interconnection change is enough

Fig. 2: Distributed arithmetic circuit.

SASIMI 2022 ProceedingsA-12

- 66 -

(a) MAC calculation of LSB.

(b) MAC calculation of LSB + 1.

(c) MAC calculation of MSB.

(d) Correction of decimal point position

Fig. 3: Distributed arithmetic algorithm for Eq. (3).

(a) MAC calculation of LSB

(b) MAC calculation of LSB + 1

(c) MAC calculation of LSB + 2

(d) MAC calculation of MSB

(e) Correction of the position of decimal point

Fig. 4: Distributed arithmetic algorithm for Tayler series

expansion in Eq. (4).

- 67 -

IⅤ. Distributed Arithmetic for Taylor Series Expansion

A. How to DA for Taylor-Series Expansion Calculation.

Now let us consider about Eq. (4) when decimal 𝑥 = 1.5.

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 (4)

Notice that we need to calculate 𝑥2 in binary format by

multiplication of 𝑥 × 𝑥 to make a LUT and then do

operations as shown in Fig. 4.

B. Direct Application of DA

Let us consider the direct application of the DA to the

Taylor-series expansion with 10 terms (Eq. (10)). We need 8

multiplications for 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9 to make a LUT

with 1024 words.

𝑓(𝑥) = 𝑎
0

+ 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4

+ 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 + 𝑎8𝑥8 + 𝑎9𝑥9. (5)

We see that since the number of multiplications is almost the

same as the direct calculation in Fig. 1 and some additional

hardware is required, the direct DA application is completely

useless.

C. Application of DA with Term Division Method

Now, we propose the DA with the term division method.

We rearranged Eq. (5) as follows:

𝑓(𝑥) = 𝑎
0

+ 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6 + 𝑎8𝑥8+

+𝑥 (𝑎1 + 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6 + 𝑎9𝑥8). (6)

We calculated 𝑥2, 𝑥4, 𝑥6, and 𝑥8 with 4 multiplications. Also,

the followings are calculated with DA:

 𝐴 = 𝑎0 + 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6 + 𝑎8𝑥8. (7)

 𝐵 = 𝑎1 + 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6 + 𝑎9𝑥8. (8)

Then we calculated the following with 1 multiplication and 1

addition:

𝐴 + 𝑥 𝐵 (9)

Then 5 multiplications, 1 addition and 2 DA calculations are

required. Also 2 LUTs with 25 words are used; the total LUT

size is 2x25(= 64) words.

Thus, the above investigated method can reduce the number

of multiplications by almost half compared to the direct

calculation method without DA, though 2 distributed

arithmetic calculations are required.

Notice that if we calculate the followings with DA:

𝑆 = 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6 + 𝑎8𝑥8. (10)

 𝑇 = 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6 + 𝑎9𝑥8. (11)

Then we obtain

A = 𝑎0+S (12)

B = 𝑎1+T (13)

and the total LUT size is 2x24(= 32) words, though two

more additions are required.

(a) LUT for no term division

(b) LUTs for term division by 2

Fig. 5: LUTs in cases without term division and with term

division by 2.

Ⅴ. Verification of Term Division Method

with Taylor Series Expansion with Many Terms

We investigated the cases of several different terms to find

effective term division.
Let us consider the Taylor series expansion with 16 terms as

follows:

𝑓(𝑥) = 𝑎
0

+ 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3

+𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7

+𝑎8𝑥8 + 𝑎9𝑥9 + 𝑎10𝑥10 + 𝑎11𝑥11

+𝑎12𝑥12 + 𝑎13𝑥13 + 𝑎14𝑥14 + 𝑎15𝑥15 (14)

(i) We considered the term division by 2:

𝑓(𝑥) = 𝑎
0

+ 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6

+𝑎8𝑥8 + 𝑎10𝑥10 + 𝑎12𝑥12 + 𝑎14𝑥14

+𝑥 (𝑎1 + 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6

+𝑎9𝑥8 + 𝑎11𝑥10 + 𝑎13𝑥12 + 𝑎15𝑥14). (15)

We calculated 𝑥2, 𝑥4, 𝑥6, 𝑥8, 𝑥10, 𝑥12 and 𝑥14 with 7

multiplications. Then the followings are calculated with DA:

 𝐶 = 𝑎0 + 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6

+𝑎8𝑥8 + 𝑎10𝑥10 + 𝑎12𝑥12 + 𝑎14𝑥14. (16)

𝐷 = 𝑎1 + 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6

+𝑎9𝑥8 + 𝑎11𝑥10 + 𝑎13𝑥12 + 𝑎15𝑥14. (17)

Then we calculated the following with 1 multiplication and 1

addition:

𝐶 + 𝑥 𝐷 (18)

Then 8 multiplications, 1 addition and 2 DA calculations are

required. Also 2 LUTs with 27 words are used: the total LUT

size is 2x27(= 512) words.

- 68 -

(ii) Next, we considered the term division by 4:

𝑓(𝑥) = 𝑎
0

+ 𝑎4𝑥4 + 𝑎8𝑥8 + 𝑎12𝑥12

+𝑥(𝑎1 + 𝑎5𝑥4 + 𝑎9𝑥8 + 𝑎13𝑥12)

+𝑥2(𝑎2 + 𝑎6𝑥4 + 𝑎10𝑥8 + 𝑎14𝑥12)

+𝑥3(𝑎3 + 𝑎7𝑥4 + 𝑎11𝑥8 + 𝑎15𝑥12). (19)

We calculated 𝑥4, 𝑥8 and 𝑥12 with 3 multiplications. Then

the followings are calculated with DA:

𝐸 = 𝑎0 + 𝑎4𝑥4 + 𝑎8𝑥8 + 𝑎12𝑥12. (20)

𝐹 = 𝑎1 + 𝑎5𝑥4 + 𝑎9𝑥8 + 𝑎13𝑥12. (21)

𝐺 = 𝑎2 + 𝑎6𝑥4 + 𝑎10𝑥8 + 𝑎14𝑥12. (22)

𝐻 = 𝑎3 + 𝑎7𝑥4 + 𝑎11𝑥8 + 𝑎15𝑥12. (23)

Then we calculated the following with 3 multiplications and 3

additions:

𝐸 + 𝑥 (𝐹 + 𝑥 (𝐺 + 𝑥 𝐻)). (24)

Then 6 multiplications, 3 additions and 4 DA calculations are

required. Also 4 LUTs with 24 words are used: the total LUT

size is 4x24(= 64) words.

(iii) We considered the term division by 8.

𝑓(𝑥) = 𝑎
0

+ 𝑎8𝑥8 + 𝑥(𝑎1 + 𝑎9𝑥8)

+𝑥2(𝑎2 + 𝑎10𝑥8) + 𝑥3(𝑎3 + 𝑎11𝑥8)

+𝑥4(𝑎4 + 𝑎12𝑥8) + 𝑥5(𝑎5 + 𝑎13𝑥8)

+𝑥6(𝑎6 + 𝑎14𝑥8) + 𝑥7(𝑎7 + 𝑎15𝑥8). (25)

We calculated 𝑥8 with 1 multiplication. Then the followings

are calculated with DA:

𝐼 = 𝑎0 + 𝑎8𝑥8. (26)

𝐽 = 𝑎
1

+ 𝑎9𝑥8. (27)

𝐾 = 𝑎2 + 𝑎10𝑥8. (28)

𝐿 = 𝑎3 + 𝑎11𝑥8. (29)

𝑀 = 𝑎4 + 𝑎12𝑥8. (30)

𝑁 = 𝑎5 + 𝑎13𝑥8. (31)

𝑃 = 𝑎6 + 𝑎14𝑥8. (32)

𝑄 = 𝑎7 + 𝑎15𝑥8. (33)

Then we calculated the following with 7 multiplications and 7

additions:

𝐼 + 𝑥 (𝐽 + 𝑥 (𝐾 + 𝑥 (𝐿 + 𝑥 (𝑀 + 𝑥(𝑁 + 𝑥(𝑃 + 𝑥𝑄))))))

(34)

Then 8 multiplications, 7 additions and 8 DA calculations are

required. Also 8 LUTs with 4 words are used; the total LUT

size is 32 words.

As shown in the above, the term division method results in

reduction of LUT memory size and number of multiplications.

We see that when the number of multiplications is dominant

for hardware size and speed, the term division method is

effective.

As Table 1 shows, the more you divide by, the smaller the

LUT memory size. However, the number of multiplications

begins to increase at certain point; the optimal point is the

division by approximately √𝑁 for N-term Taylor series

expansion and the number of multiplications is approximately

2√𝑁- 2. Fig. 6 shows some explanations.

Due to the recent advancement of the VLSI technology, the

large memory size LUT may not be a big issue in the cost

viewpoint. However, the large size LUT requires some time

for full data load, which would slow down the calculation

speed.

Table 1: Number of Taylor series expansion terms, number of

term divisions, number of multiplications, and LUT size.

 Division by
Number of

multiplications
LUT size

16

terms

1 14 65536

2 8 512

4 6 64

8 8 32

32

terms

1 30 4294967296

2 16 131072

4 10 1024

8 10 128

16 16 64

64

terms

1 62 1.84×1019

2 32 8589934592

4 18 262144

8 14 2048

16 18 256

32 32 128

Fig. 6: Term division and multiplication parts

VI. Conclusion

We have investigated the application of DA to the Taylor-

series expansion calculation and proposed the term division

method. We have shown here that it can reduce the number of

multiplications compared to the direct calculation, and reduce

the memory size of LUT compared to case without the term

division method. Notice that the multiplication is often

dominant for hardware size and speed. The optimal division

number to minimize the number of the multiplications is

approximately √𝑁 for N-term Taylor series expansion, and

the LUT size becomes smaller as the number of the term

divisions is increases. We have shown this statement when the

- 69 -

number of the Taylor series expansion terms is 10, 16, 32 and

64. The proposed method would make the Taylor-series

expansion method for the digital calculation of various

functions more effective, especially when the number of

Taylor series expansion terms is large.

Finally, we conclude this paper by remaking the following:

Today, much attention is being paid to Memory-in-Computing

[15, 16]. There is a lot of memory close to digital arithmetic

circuits is available and our proposed algorithm would be

suitable to this architecture.

References

[1] M. T. Khan, R. A. Shaik, “High-performance VLSI

architecture of DLMS adaptive filter for fast-convergence

and low-MSE”, IEEE Transactions on Circuits and

Systems Ⅱ: Express Briefs, Vol. 69, No. 4, pp. 2106—2110

(Apr. 2022).

[2] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, D. V.

Anderson, “LMS adaptive filters using distributed

arithmetic for high throughput”, IEEE Transactions on

Circuits and Systems I: Regular Papers, Vol. 52, No. 7, pp.

1327–1337 (Jul. 2005).

[3] R. Guo, L. S. DeBrunner, “Two high-performance

adaptive filter implementation schemes using distributed

arithmetic”, IEEE Transactions on Circuits and Systems

II: Express Briefs, Vol. 58, No. 9, pp. 600–604 (Sept.

2011).

[4] M. S. Prakash, R. A. Shaik, “Low-area and high-

throughput architecture for an adaptive filter using

distributed arithmetic”, IEEE Transactions on Circuits

and Systems II: Express Briefs, Vol. 60, No. 11, pp. 781–

785 (Nov. 2013).

[5] S. Y. Park, P. K. Meher, “Low-power, high-throughput,

and low-area adaptive FIR filter based on distributed

arithmetic”, IEEE Transactions on Circuits and Systems

II: Express Briefs, Vol. 60, No. 6, pp. 346–350 (Jun. 2013).

[6] M. T. Khan, R. A. Shaik, S. P. Matcha, “Improved

convergent distributed arithmetic based low complexity

pipelined least-mean-square filter”, IET Circuits, Devices

& Systems, Vol. 12, No. 6, pp. 792–801 (May. 2018).

[7] M. T. Khan, R. A. Shaik, “Optimal complexity

architectures for pipelined distributed arithmetic-based

LMS adaptive filter”, IEEE Transactions on Circuits and

Systems I: Regular Papers, Vol. 66, No. 2, pp. 630–642

(Feb. 2019).

[8] S. Ahmad, S. G. Khawaja, N. Amjad, M. Usman, “A novel

multiplier-less LMS adaptive filter design based on offset

binary coded distributed arithmetic”, IEEE Access, Vol. 9,

pp. 78138—78152 (May. 2021).

[9] R. Bala, S. Aktar, “Fast Fourier transformation realization

with distributed arithmetic”, International Journal of

Computer Applications, Vol. 102, No. 15, pp. 22-25 (Sept.

2014).

[10] J. Wei, A. Kuwana, H. Kobayashi, K. Kubo, “Divide and

conquer: floating-point exponential calculation based on

Taylor-series expansion”, IEEE 14th International

Conference on ASIC, Kunming, China (Oct. 2021).

[11] J. Wei, A. Kuwana, H. Kobayashi, K. Kubo, “IEEE754

binary32 floating-point logarithmic algorithms based on

Taylor-series expansion with mantissa region conversion

and division”, IEICE Trans. Fundamentals, Vol. E105-A,

No.7 (Jul. 2022).

[12] J. Wei, A. Kuwana, H. Kobayashi, K. Kubo, Y. Tanaka,

“Floating-point inverse square root algorithm based on

Taylor-series expansion”, IEEE Transactions on Circuits

and Systems II: Express Briefs, Vol. 68, No. 7, pp. 2640-

2644 (Jul. 2021).

[13] J. Wei, A. Kuwana, H. Kobayashi, K. Kubo, "Revisit to

floating-point division algorithm based on Taylor-series

expansion", 16th IEEE Asia Pacific Conference on

Circuits and Systems, Ha Long Bay, Vietnam, (Dec.

2020).

[14] E. Özalevli, W. Huang, P. E. Hasler, D. V. Anderson, “A

reconfigurable mixed-signal VLSI implementation of

distributed arithmetic used for finite-impulse response

filtering”, IEEE Trans. Circuits and Systems-Ⅰ: Regular

Papers, Vol. 55, No. 2, pp. 510—521 (Mar. 2008).

[15] J. Chen, W. Zhao, Y. Ha, "Area-efficient distributed

arithmetic optimization via heuristic decomposition and

in-Memroy computing", IEEE 13th International

Conference on ASIC, Kunming, China (Oct. 2019).

[16] V. Lakshmi, V. Pudi, J. Reuben, "Inner product

computation in-Memory using distributed arithmetic",

IEEE Transactions on Circuits and Systems I: Regular

Papers (2022 Early Access)

- 70 -

