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Abstract - This paper describes the digital arithmetic that reduces 

the calculation and hardware (logic circuits and memory) for 

Taylor series expansion calculation by applying the distributed 

(bit-serial) arithmetic with the proposed term division method. 

The distributed arithmetic (DA) is a multiplier-less approach for 

calculating multiply-accumulate (MAC) operation, but its direct 

application to the Taylor-series expansion calculation still 

demands almost the same number of multiplications as the direct 

calculation and additionally large size Look Up Table (LUT); 

hence it is useless. Then we propose the term division method 

which can reduce the number of multiplications and the LUT size 

significantly. Further, we found that the optimal number of the 

term division is approximately the square root of the number of 

the Taylor series expansion terms. 

 
I. Introduction 

 
Digital electronic devices are getting smaller and low power 

in these days, and many multiply-accumulate (MAC) 

operations are often used there [1] . The distributed arithmetic 

(DA) is often used for MAC operations without multipliers, 

and hence it is small circuit and low power. It has been used in 

adaptive filter (ADF) using least-mean-square (LMS)[2]-[9] . 

Taylor series expansion is a popular approach to calculate 

various functions effectively in digital signal processing [10]-[13] 

and it also uses the MAC operations. In this paper we 

investigate the application of the DA to the Taylor-series 

expansion calculation. Direct application of the DA needs 

large memory but the number of the required multiplication is 

not reduced. Then we propose here the term division method 

for the DA application of the Tayler-series expansion 

calculation. Its principle and verification with some examples 

are shown. 

ⅠⅠ. Taylor Series Expansion 

 
Taylor series expansion is defined as following: 

𝑓(𝑥) = 𝑓(𝛼) +
𝑓′(𝛼)

1!
(𝑥 − 𝛼) +

𝑓′′(𝛼)

2!
(𝑥 − 𝛼)2 + ⋯ (1) 

Suppose that 𝛼 = 0 , 𝑓(𝑥)  has 10 terms, and each 

coefficient is given by 𝑎𝑛, Eq. (1) yields to the following: 

 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎9𝑥9 (2) 

  

Rearrange Eq. (2) as shown in Fig. 1 to multiply 𝑥 

sequentially, and then we see that there the number of 

multiplications is 9 and also the number of additions is 9. 

Notice that in many cases, the calculation and hardware 

bottleneck is the multiplication. 

 
Fig. 1: Direct calculation of Taylor-series expansion. 

 

III. Distributed Arithmetic 

 
The DA performs the MAC calculation without multipliers 

and hence it can reduce the hardware amount. Fig. 2 shows the 

DA circuit composed of a Look-Up Table (LUT), a one-bit-

right-shifter, an adder and registers. As an example, consider 

the following calculation: 

 

𝑦 = ℎ0𝑥0 +  ℎ1𝑥1 +  ℎ2𝑥2 (3) 

 

Suppose that the inputs of 𝑥0 , 𝑥1 , 𝑥2  in binary format are 

given as follows: 

 

𝑥0 = 11.1, 𝑥1 = 11.0, 𝑥2 = 10.1.  

 

In Fig. 2, these are provided as “address”, and the calculation 

result 𝑦  is obtained as “Out”. Now prepare an LUT so that 

each sum comes from coefficients at each term where the 

address is “1” in Fig.3.  As shown in Fig. 3, calculate sum of 

each address and multiply 
1

2
 every time when doing one-bit-

right-shift to next digit, repeatedly from LSB to MSB in a bit-

serial manner. At the end, define 𝑏 as the number of integer 

bits and (virtually) multiply 2𝑏 or perform b-bit left-shift to 

correct the position of decimal point. Notice that in many 

actual implementation cases, there is no need for 

multiplication or bit-shift for the decimal point correction, but 

only interconnection change is enough 

 

 

 
Fig. 2: Distributed arithmetic circuit. 
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(a) MAC calculation of LSB. 

 

 
(b) MAC calculation of LSB + 1. 

 

 
(c) MAC calculation of MSB. 

 

 
(d) Correction of decimal point position 

 

Fig. 3: Distributed arithmetic algorithm for Eq. (3). 

 

 
(a) MAC calculation of LSB 

 

 
(b) MAC calculation of LSB + 1 

 

 
(c) MAC calculation of LSB + 2 

 

 
(d) MAC calculation of MSB 

 

 
(e) Correction of the position of decimal point 

Fig. 4: Distributed arithmetic algorithm for Tayler series 

expansion in Eq. (4). 

- 67 -



IⅤ. Distributed Arithmetic for Taylor Series Expansion 
 

A. How to DA for Taylor-Series Expansion Calculation.  

Now let us consider about Eq. (4) when decimal 𝑥 = 1.5. 

 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 (4) 

 

Notice that we need to calculate 𝑥2  in binary format by 

multiplication of 𝑥 × 𝑥  to make a LUT and then do 

operations as shown in Fig. 4. 

 
B. Direct Application of DA 

Let us consider the direct application of the DA to the 

Taylor-series expansion with 10 terms (Eq. (10)). We need 8 

multiplications for 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9 to make a LUT 

with 1024 words. 

 

𝑓(𝑥) =  𝑎
0

+ 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 

+ 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 + 𝑎8𝑥8 + 𝑎9𝑥9.   (5) 

 

We see that since the number of multiplications is almost the 

same as the direct calculation in Fig. 1 and some additional 

hardware is required, the direct DA application is completely 

useless. 

 

C. Application of DA with Term Division Method 

Now, we propose the DA with the term division method.  

We rearranged Eq. (5) as follows: 

 

𝑓(𝑥) =  𝑎
0

+ 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6 + 𝑎8𝑥8+ 

+𝑥 (𝑎1 + 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6 + 𝑎9𝑥8).       (6) 

 

We calculated 𝑥2,  𝑥4, 𝑥6, and 𝑥8 with 4 multiplications. Also, 

the followings are calculated with DA: 

 

 𝐴 =  𝑎0 + 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6 + 𝑎8𝑥8.         (7) 

 𝐵 =  𝑎1 + 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6 + 𝑎9𝑥8.         (8) 

 

Then we calculated the following with 1 multiplication and 1 

addition: 

𝐴 + 𝑥 𝐵                     (9) 

Then 5 multiplications, 1 addition and 2 DA calculations are 

required. Also 2 LUTs with 25 words are used; the total LUT 

size is 2x25(= 64) words. 

Thus, the above investigated method can reduce the number 

of multiplications by almost half compared to the direct 

calculation method without DA, though 2 distributed 

arithmetic calculations are required. 

 

Notice that if we calculate the followings with DA: 

𝑆 =  𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6 + 𝑎8𝑥8.         (10) 

 𝑇 = 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6 + 𝑎9𝑥8.         (11) 

Then we obtain  

A = 𝑎0+S                   (12) 

B = 𝑎1+T                   (13) 

and the total LUT size is 2x24(= 32)  words, though two 

more additions are required. 

 
(a) LUT for no term division 

 

 
(b) LUTs for term division by 2 

Fig. 5: LUTs in cases without term division and with term 

division by 2. 

 

Ⅴ. Verification of Term Division Method  

with Taylor Series Expansion with Many Terms 

 
We investigated the cases of several different terms to find 

effective term division. 
Let us consider the Taylor series expansion with 16 terms as 

follows: 

𝑓(𝑥) =  𝑎
0

+ 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 

+𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7 

+𝑎8𝑥8 + 𝑎9𝑥9 +  𝑎10𝑥10 + 𝑎11𝑥11 

+𝑎12𝑥12 + 𝑎13𝑥13 + 𝑎14𝑥14 + 𝑎15𝑥15     (14) 

 

(i) We considered the term division by 2: 

𝑓(𝑥) =  𝑎
0

+ 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6 

+𝑎8𝑥8 + 𝑎10𝑥10 + 𝑎12𝑥12 + 𝑎14𝑥14 

+𝑥 (𝑎1 + 𝑎3𝑥2 + 𝑎5𝑥4 + 𝑎7𝑥6 

+𝑎9𝑥8 + 𝑎11𝑥10 + 𝑎13𝑥12 + 𝑎15𝑥14).      (15) 

 

We calculated 𝑥2,  𝑥4, 𝑥6,  𝑥8, 𝑥10, 𝑥12  and 𝑥14 with 7 

multiplications. Then the followings are calculated with DA: 

 𝐶 = 𝑎0 + 𝑎2𝑥2 + 𝑎4𝑥4 + 𝑎6𝑥6 

+𝑎8𝑥8 +  𝑎10𝑥10 + 𝑎12𝑥12 + 𝑎14𝑥14.     (16) 

𝐷 = 𝑎1 + 𝑎3𝑥2 +  𝑎5𝑥4 + 𝑎7𝑥6 

+𝑎9𝑥8 + 𝑎11𝑥10 + 𝑎13𝑥12 + 𝑎15𝑥14.     (17) 

 

Then we calculated the following with 1 multiplication and 1 

addition: 

𝐶 + 𝑥 𝐷                  (18) 

Then 8 multiplications, 1 addition and 2 DA calculations are 

required. Also 2 LUTs with 27 words are used: the total LUT 

size is 2x27(= 512) words. 
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(ii) Next, we considered the term division by 4: 

𝑓(𝑥) =  𝑎
0

+ 𝑎4𝑥4 + 𝑎8𝑥8 + 𝑎12𝑥12 

+𝑥(𝑎1 +  𝑎5𝑥4 + 𝑎9𝑥8 + 𝑎13𝑥12) 

+𝑥2(𝑎2 + 𝑎6𝑥4 + 𝑎10𝑥8 + 𝑎14𝑥12) 

+𝑥3(𝑎3 + 𝑎7𝑥4 + 𝑎11𝑥8 + 𝑎15𝑥12).      (19) 

 

We calculated   𝑥4,  𝑥8  and 𝑥12 with 3 multiplications. Then 

the followings are calculated with DA: 

𝐸 =  𝑎0 + 𝑎4𝑥4 + 𝑎8𝑥8 + 𝑎12𝑥12.        (20) 

𝐹 = 𝑎1 +  𝑎5𝑥4 + 𝑎9𝑥8 + 𝑎13𝑥12.        (21) 

𝐺 = 𝑎2 +  𝑎6𝑥4 + 𝑎10𝑥8 + 𝑎14𝑥12.       (22) 

𝐻 = 𝑎3 +  𝑎7𝑥4 + 𝑎11𝑥8 + 𝑎15𝑥12.       (23) 

 

Then we calculated the following with 3 multiplications and 3 

additions: 

𝐸 +  𝑥 (𝐹 + 𝑥 (𝐺 + 𝑥 𝐻)).            (24) 

Then 6 multiplications, 3 additions and 4 DA calculations are 

required. Also 4 LUTs with 24 words are used: the total LUT 

size is 4x24(= 64) words. 

 

(iii) We considered the term division by 8. 

𝑓(𝑥) =  𝑎
0

+ 𝑎8𝑥8 + 𝑥(𝑎1 + 𝑎9𝑥8) 

+𝑥2(𝑎2 +  𝑎10𝑥8) + 𝑥3(𝑎3 + 𝑎11𝑥8) 

+𝑥4(𝑎4 + 𝑎12𝑥8) + 𝑥5(𝑎5 + 𝑎13𝑥8) 

+𝑥6(𝑎6 + 𝑎14𝑥8) + 𝑥7(𝑎7 + 𝑎15𝑥8).      (25) 

 

We calculated 𝑥8 with 1 multiplication. Then the followings 

are calculated with DA: 

𝐼 =  𝑎0 + 𝑎8𝑥8.                 (26) 

𝐽 =  𝑎
1

+ 𝑎9𝑥8.                 (27) 

𝐾 =  𝑎2 + 𝑎10𝑥8.                (28) 

𝐿 =  𝑎3 + 𝑎11𝑥8.                (29) 

𝑀 =  𝑎4 + 𝑎12𝑥8.                (30) 

𝑁 =  𝑎5 + 𝑎13𝑥8.                (31) 

𝑃 =  𝑎6 + 𝑎14𝑥8.                (32) 

𝑄 =  𝑎7 + 𝑎15𝑥8.                (33) 

 

Then we calculated the following with 7 multiplications and 7 

additions: 

𝐼 +  𝑥 ( 𝐽 +  𝑥 (𝐾 +  𝑥 (𝐿 + 𝑥 (𝑀 + 𝑥(𝑁 +  𝑥(𝑃 +  𝑥𝑄)))))) 

(34) 

Then 8 multiplications, 7 additions and 8 DA calculations are 

required. Also 8 LUTs with 4 words are used; the total LUT 

size is 32 words. 

As shown in the above, the term division method results in 

reduction of LUT memory size and number of multiplications. 

We see that when the number of multiplications is dominant 

for hardware size and speed, the term division method is 

effective. 

As Table 1 shows, the more you divide by, the smaller the 

LUT memory size. However, the number of multiplications 

begins to increase at certain point; the optimal point is the 

division by approximately √𝑁  for N-term Taylor series 

expansion and the number of multiplications is approximately 

2√𝑁- 2. Fig. 6 shows some explanations. 

Due to the recent advancement of the VLSI technology, the 

large memory size LUT may not be a big issue in the cost 

viewpoint. However, the large size LUT requires some time 

for full data load, which would slow down the calculation 

speed. 

 

Table 1: Number of Taylor series expansion terms, number of 

term divisions, number of multiplications, and LUT size. 

 Division by 
Number of 

multiplications 
LUT size 

16 

terms 

1 14 65536 

2 8 512 

4 6 64 

8 8 32 

32 

terms 

1 30 4294967296 

2 16 131072 

4 10 1024 

8 10 128 

16 16 64 

64 

terms 

1 62 1.84×1019 

2 32 8589934592 

4 18 262144 

8 14 2048 

16 18 256 

32 32 128 

 

 
Fig. 6: Term division and multiplication parts  

 

 

VI. Conclusion 
 

We have investigated the application of DA to the Taylor-

series expansion calculation and proposed the term division 

method. We have shown here that it can reduce the number of 

multiplications compared to the direct calculation, and reduce 

the memory size of LUT compared to case without the term 

division method. Notice that the multiplication is often 

dominant for hardware size and speed. The optimal division 

number to minimize the number of the multiplications is 

approximately √𝑁  for N-term Taylor series expansion, and 

the LUT size becomes smaller as the number of the term 

divisions is increases. We have shown this statement when the 
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number of the Taylor series expansion terms is 10, 16, 32 and 

64. The proposed method would make the Taylor-series 

expansion method for the digital calculation of various 

functions more effective, especially when the number of 

Taylor series expansion terms is large. 

Finally, we conclude this paper by remaking the following: 

Today, much attention is being paid to Memory-in-Computing 

[15, 16]. There is a lot of memory close to digital arithmetic 

circuits is available and our proposed algorithm would be 

suitable to this architecture. 
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