
Multiple regression analysis considering multicollinearity for estimating
CPU cycles using performance counters

Ryota Hattori Yoshinori Takeuchi

Graduate School of Science and Engineering Faculty of Science and Engineering
Kindai University Kindai University

Higasi-Osaka, Osaka 577-8502 Higasi-Osaka, Osaka 577-8502
2233340407d@kindai.ac.jp takeuchi@ele.kindai.ac.jp

Abstract— Currently, the development of indus-

trial controller devices requires the estimation of the

execution time of control software running on em-

bedded processors. However, embedded processors

have the complex functions and functional specifica-

tions are black box. Thus, estimating the execution

time is difficult. Recently, many studies offer estimat-

ing methods of CPU cycles using performance coun-

ters as methods for estimating execution time. Since

only a limited number of performance counters can

be measured at one time, repeated measurements are

required in order to get many performance counter

values, which take a lot of time. This study pro-

poses multiple regression analysis considering multi-

collinearity (MRACM) to reduce the number of mea-

surements for estimating CPU cycles. This study

compares estimation accuracy of CPU cycles by lin-

ear programming (LP), multiple regression analysis

(MRA), and multiple regression analysis considering

multicollinearity (MRACM). This study discusses the

best analytical approach for each program. Exper-

imental results show that MRACM can reduce the

number of required performance counters to 2 and es-

timate CPU cycles within the almost same estimation

errors as conventional methods when multicollinear-

ity occurs and counters with high and low correlation

coefficients exist.

I. Introduction

Today, control software on embedded processors is used
for developing industrial controllers. Since the industrial
controllers need to guarantee real time performance, it
is important to estimate the execution time of the con-
trol software. However, estimating the execution time is
limited by the complexity of recent embedded processors.

As a means for observing various characteristics of
the CPU architecture related to software execution, re-
cent CPUs have a function called performance counter[1],
which measures occurrence events when executing the

software. Performance counters can confirm the details
regarding the performance when executing the software.
Thus, various studies proposed methods for estimating
the CPU cycles using performance counters[2][3].
Benchmark software are evaluation programs that as-

sume control software executing on embedded proces-
sors. Benchmarks are used for assessing the relative
performance among various software and hardware plat-
forms. A number of benchmarks have been proposed in-
cluding SPEC[4], MediaBench[5], Mibench[6], and WCET
(Worst-Case Execution Time) benchmark code[7], which
focus on specific areas of computation.
This paper compares estimation of accuracy of CPU

cycles by linear programming, multiple regression anal-
ysis, and multiple regression analysis considering multi-
collinearity. In addition, this study discusses the best
analytical approach for each program.
The organization of this paper is as follows. Section

II explains related work and introduces their limitations.
Then, section III explains the performance counter and
estimation methods. Section IV explains the evaluation
board and benchmarks. Section V conducts some experi-
ments and shows some considerations to estimation meth-
ods. Finally, section VI concludes this paper and shows
some future work.

II. Related Studies

Various methods for modeling execution performance
have been proposed. Tanaka et al. have proposed an ex-
ecution performance estimation method which use linear
programming (LP) for a linear regression model of vari-
ous performance counter value[2]. This method enables
to eliminate inappropriate results such as sign inversion
that occurred in the least squares estimation, and to ob-
tain a more accurate coefficient under constraints on the
sign of the coefficient. Reference[3] proposes multiple re-
gression analysis considering multicollinearity (MRACM)
and multiple regression analysis (MRA) as an execution
performance estimation method. These methods can se-

SASIMI 2024 ProceedingsR2-4

- 101 -



lect performance counters that are strongly related to es-
timating execution performance.
References[2][3] propose to adopt the outputs of the

CPU performance counter as the factors in the estima-
tion model. These studies measure performance counter
values and use performance analysis methods to create
estimation models. Performance counter values can fully
reflect both CPU architecture and target software, which
is supposed to facilitate the performance estimation and
improve the estimation accuracy.
This study compares estimation accuracy of CPU cy-

cles by LP, MRA, and MRACM, and discusses the best
analytical approach for each program.

III. Performance counter and Estimation
methods

This study uses execution performance estimation
methods with various performance counter value. This
section explains the performance counter on the CPU and
estimation methods.

A. Performance counter

The performance counter is an embedded circuit for
measuring internal event counts during software execution
in a general commercial CPU. It is widely implemented
from high-end CPUs like Intel processors, PowerPCs, to
embedded CPUs like ARM Cortex processor. It is used
to collect data on processor operation, estimate power
consumption, and detect malware[8][9][10].
In this paper, NXP LA1021A processor is used for

the performance monitoring. NXP LS1021A includes an
ARM CortexA7 Multicore IP. TABLE I shows typical
events that can be measured by the performance mon-
itoring unit (PMU). Event name indicates the name of
each performance counter. Description indicates the fea-
ture of each performance counter. ARM Cortex-A7 core
can measure a total of 44 events. However, this processor
can measure only 4 events at once. Therefore, in order to
get all performance counter values, 11 measurements are
required for each benchmark program.

B. Estimation methods

This section explains estimation methods used in this
study.

B.1. Linear programming (LP)

This estimation method is a software performance model
that linearly combines multiple performance counter val-
ues and introduces sign constraints on model parameter
values. Execution performance may calculate negative
coefficients due to the increase in performance impact.
Thus, introducing sign constraints can set the coefficients

TABLE I
Cortex-A7 PMU Events (example)[1]

Event Name Description

INST RETIRED (IR) Number of issued instructions

PC WRITE RETIRED (PWR)
Number of writes to program

counter

BR IMMED RETIRED (BIR)
Number of immediate

instruction executions

BR RETURN RETIRED (BRR)
Number of return instruction

executions

BR MIS PRED (BMR)
Number of branch prediction

errors

BR PRED (BP)
Number of branch prediction

errors

CPU CYCLES Cycle

L1I CACHE (L1IC) Level 1 instruction cache access

L1D CACHE (L1DC) Level 1 data cache access

MEM ACCESS (MA) Data memory access

L1D CACHE REFILL (L1DCR) Level 1 data cache refill

L2D CACHE WB(L2DCW) Level 2 data cache clear

L2D CACHE REFILL(L2DCR) Level 2 data cache refill

to positive values. This method can eliminate the im-
proper result of sign reversal of parameter values that
occurs in the general least squares method and estimate
the performance model with high validity.
A model formula for performance estimation is as fol-

lows. Let the estimated CPU cycles be ĉi. ĉi is modeled
using eq (1).

ĉi = xI +
N∑
i=1

xi · Ei (1)

where Ei indicates the values of various events measured
by PMU, xi(i = 1, . . . , N) indicates the coefficient
parameters for each event, and xI indicates the intercept
(offset).
The estimation method by the linear programming

method is defined as follows:

minimize :
∑M

i=1 εi

subject to : ε1 = c1 − (xI +
N∑
i=1

xi · E1
i ) ≥ 0,

ε2 = c2 − (xI +
N∑
i=1

xi · E2
i ) ≥ 0,

· · ·

εM = cM − (xI +
N∑
i=1

xi · EM
i ) ≥ 0,

xI ≥ 0, xi ≥ 0 (i = 1, · · · , N)

- 102 -



where cj indicates the j-th measured CPU CYCLE event

value, and Ej
i indicates the j-th measured Ei event value

which is indexed by i. Each εj is a residual error for
estimated CPU cycles and xi (i = 1, . . . , N) indicates
the coefficient parameters for each event. The intercept
xI , which is the offset value, is introduced by assuming
the pipeline operation of the CPU.

B.2. Multiple regression analysis (MRA)

This estimation method is a statistical data analysis. This
method indicates the influence of several explanatory vari-
ables related to the objective variable and quantifies in the
form of a function. In this study, CPU cycles are used as
the objective variable and performance counter values are
used as explanatory variables to estimate CPU cycles.
A model formula for performance estimation is eq (1).

The estimation method by the multiple regression analysis
is defined as follows:

minimize :
∑N

i=1(ci − ĉi)
2

where ci is the i-th measured CPU cycles and ĉi is the
i-th estimated CPU cycles.

B.3. Multiple regression analysis considering
multicollinearity (MRACM)

Multicollinearity indicates the presence of a combination
of explanatory variables with high correlation coefficients.
Although multicollinearity does not directly affect estima-
tion accuracy, it can cause errors in the model coefficients,
making the model unstable and potentially generating in-
accurate forecasts. Therefore, when selecting explanatory
variables, it is necessary to select only the necessary ex-
planatory variables without using redundant information
that could lead to multicollinearity. This is important
for accurate and stable models. Variance inflation factor
(VIF) is used to detect multicollinearity among variables.
This method finds the correlation coefficient of the se-

lected counters of the selected counters by multiple re-
gression analysis. When counters with high and low cor-
relation coefficients occur, each counter is combined to
estimate CPU cycles. The counter combination with the
highest estimation accuracy is selected.

IV. Evaluation environment

This section explains the evaluation board and bench-
marks used in this study.

A. Evaluation board

This study uses NXP QorlQ LS1021A Tower System
Module. This evaluation board is one of the typical em-
bedded CPU designed for a wide range of industrial appli-
cations. The evaluation board is equipped with two ARM

TABLE II
MiBench Benchmarks[6]

Category Program name Description

Telecomm FFT

Fast Fourier Transform and

its inverse transform on an

array of data

Auto/Industrial basicmath rad2deg Angle conversions

Network dijkstra The shortest path problem

TABLE III
WCET benchmark[7]

Program name Description

fibcall Iterative fibonacci, used to calculate fib

cnt Counting non-negative numbers in a matrix

duff Unstructured loop

Cortex-A7 cores and a branch predictor. As for the cache
size, the instruction and data L1 cache is 32KB and the
L2 cache is 512KB. In addition, the evaluation software
was compiled as bare metal for this CPU, and the gener-
ated program was loaded and executed directly from the
boot loader. Using bare metal can eliminate the impact
of timer interrupt process.

B. Benchmarks

This study uses Mibench and WCET benchmark as
evaluation software. Mibench is a free benchmark for
embedded systems. It ties to capture the application di-
versity of the embedded system area and consists of 35
embedded applications from six categories. The six cate-
gories are Automotive and Industrial Control, Consumer
Devices, Office Automation, Networking, Security, and
Telecommunications. TABLE II shows programs used in
this study.

The WCET benchmark software are provided by the
Mälardalen WCET benchmarks[7]. The WCET bench-
mark code is that it is useful for performing the worst case
execution time (WCET) evaluation required for the con-
troller, and software having various execution time char-
acteristics are provided. TABLE III shows programs used
in this study. This study selects six different programs
with complex processing.

V. Experimental Results

This section confirms the availiability of multiple re-
gression analysis considering multicollinearity for each
program and compares the estimation accuracy results

- 103 -



of CPU cycles by linear programming (LP), multiple re-
gression analysis (MRA), and multiple regression analysis
considering multicollinearity (MRACM).

A. Benchmark Results

This study defines the TEST# for each benchmark soft-
ware. TEST# is a program in which the matrix size and
the number of iterations are changed in the same program
code. The names of TEST#, like TEST1, TEST2, are de-
termined according to the order of the number of cycles
of programs.
This study uses data from TEST1 to TEST10 to esti-

mate the coefficients of the parameters of the performance
model.

A.1. FFT Benchmark Result

TABLE IV shows the performance counters selected for
MRA and the correlation coefficient between each per-
formance counter and CPU cycles. TABLE IV indicates
that the selected performance counters have some coun-
ters with high correlation coefficients and others with low
correlation coefficients. Selected event indicates the se-
lected performance counters and correlation coefficient in-
dicates result of correlation coefficient between each per-
formance counter and CPU cycles. TABLE IV indicates
that the counter with the lowest correlation coefficient is
L1D CACHE REFILE. Fig.1 shows the estimation accu-
racy of CPU cycles when L1D CACHE REFILE is com-
bined with counters with a high correlation coefficient.
In Fig.1, horizontal axis indicates counter combination
and vertical axis indicates the error rate of CPU cycles
for each TEST. From Fig1, MRACM selects a combina-
tion of INST RETIRED and L1D CACHE REFILE. The
value of VIF is 1.08 and this combination has no multi-
collinearity effect. Thus, this benchmark uses LP, MRA,
and MRACM to estimate CPU cycles.

TABLE IV
Selected performance counters and correlation

coefficients (FFT)

Selected event Correlation coefficients

INST RETIRED 0.99

PC WRITE RETIRED 0.99

BR IMMED RETIRED 0.99

BR RETURN RETIRED 0.99

BR MIS PRED 0.99

BR PRED 0.99

L1I CACHE 0.99

L1D CACHE 0.99

L1D CACHE REFILL 0.11

Fig. 1. Combined results of performance counters (FFT)

A.2. basicmath rad2deg Benchmark Result

TABLE V shows the performance counters selected for
MRA and the correlation coefficient between each per-
formance counter and CPU cycles. Due to only coun-
ters available with high correlation coefficients generated,
MRACM cannot be used in this benchmark. Thus, this
benchmark uses LP and MRA to estimate CPU cycles.

TABLE V
Selected performance counters and correlation

coefficients (basicmath rad2deg)

Selected event Correlation coefficients

INST RETIRED 0.99

PC WRITE RETIRED 0.99

BR IMMED RETIRED 0.99

BR RETURN RETIRED 0.99

BR MIS PRED 0.99

A.3. dijkstra Benchmark Result

TABLE VI shows the performance counters selected for
MRA and the correlation coefficient between each per-
formance counter and CPU cycles. Due to only coun-
ters available with high correlation coefficients generated,
MRACM cannot be used in this benchmark. Thus, this
benchmark uses LP and MRA to estimate CPU cycles.

A.4. fibcall Benchmark Result

TABLE VII shows the performance counters selected by
MRA and the correlation coefficient between each perfor-
mance counter and CPU cycles. TABLE VII indicates
that the counter with the lowest correlation coefficient is
BR MIS PRED. Fig.2 shows the estimation accuracy of
CPU cycles when BR MIS PRED is combined with coun-
ters with a high correlation coefficient. In Fig.2, horizon-
tal axis indicates counter combination and vertical axis in-
dicates the error rate of CPU cycles for each TEST. From

- 104 -



TABLE VI
Number of selection counters and estimation results of

CPU cycles(dijkstra)

Selected event Correlation coefficients

INST RETIRED 0.99

PC WRITE RETIRED 0.99

BR IMMED RETIRED 0.99

BR RETURN RETIRED 0.99

BR MIS PRED 0.99

L1I CACHE 0.99

L1D CACHE 0.99

MEM ACCESS 0.99

L1D CACHE REFILL 0.99

Fig.2, MRACM selects a combination of INST RETIRED
and BR MIS PRED. The value of VIF is 1.15 and this
combination has no multicollinearity effect. Thus, this
benchmark uses LP, MRA, and MRACM to estimate CPU
cycles.

TABLE VII
Selected performance counters and correlation

coefficients (fibcall)

Selected event Correlation coefficients

INST RETIRED 0.99

PC WRITE RETIRED 0.99

BR MIS PRED 0.37

A.5. cnt Benchmark Result

TABLE VIII shows the performance counters selected for
MRA and the correlation coefficient between each perfor-
mance counter and CPU cycles. TABLE VIII indicates
that the counter with the lowest correlation coefficient is
L2D CACHE WB. This study estimates accuracy of CPU
cycles when L2D CACHE WB is combined with coun-
ters with a high correlation coefficient. From the same
method used in FFT and fibcall, MRACM selects a combi-
nation of L2D CACHE REFILE and L2D CACHE WB.
The value of VIF is 1.14 and this combination has no mul-
ticollinearity effect. Thus, this benchmark uses LP, MRA,
and MRACM to estimate CPU cycles.

A.6. duff Benchmark Result

TABLE IX shows the performance counters selected for
MRA and the correlation coefficient between each per-
formance counter and CPU cycles. TABLE IX indicates
that the counter with the lowest correlation coefficient is

Fig. 2. Combined results of performance counters (fibcall)

TABLE VIII
Selected performance counters and correlation

coefficients (cnt)

Selected event Correlation coefficients

INST RETIRED 0.99

PC WRITE RETIRED 0.99

BR IMMED RETIRED 0.99

L1I CACHE 0.99

L1D CACHE REFILL 0.99

L2D CACHE WB 0.35

BUS ACCESS 0.99

L2D CACHE REFILL 0.99

LINEFILL PREFETCH 0.99

L2D CACHE WB. This study estimates accuracy of CPU
cycles when L2D CACHE WB is combined with coun-
ters with a high correlation coefficient. From the same
method used in FFT and fibcall, MRACM selects a com-
bination of and INST RETIRED and L2D CACHE WB.
The value of VIF is 1.03 and this combination has no mul-
ticollinearity effect. Thus, this benchmark uses LP, MRA,
and MRACM to estimate CPU cycles.

B. Results of CPU cycle estimation accuracy

This section presents results of CPU cycle estimation
accuracy by LP, MRA, and MRACM in FFT, basic-
math rad2deg, dijkstra, fibcall, cnt and duff.

B.1. Mibench and WCET Comparison Results

TABLE X shows the number of selected counters and the
error rate of estimated CPU cycles at TEST50 in FFT,
basicmath rad2deg, dijkstra, fibcall, cnt, and duff. No. of
counters indicates number of selected performance coun-
ters. Error indicates the error rate at TEST50 when using
each analysis method. NA indicates that MRACM is not

- 105 -



TABLE IX
Selected performance counters and correlation

coefficients (duff)

Selected event Correlation coefficients

INST RETIRED 0.99

L1I CACHE 0.99

L1D CACHE REFILL -0.31

L2D CACHE -0.40

L2D CACHE WB 0.16

BUS ACCESS 0.96

BUS ACCESS RD -0.084

ENT RD ALLOC MODE 0.27

applicable. Error is defined as follows:

Error = (
ĉ− c

c
)× 100

where c is the measured CPU cycles and ĉ is the estimated
CPU cycles.

TABLE X
Number of selected counters and estimation error of CPU

cycles at TEST50 (FFT, basicmath rad2deg, dijkstra,
fibcall, cnt, duff)

benchmark LP MRA MRACM

FFT
No. of counters 6 9 2

Error [%] 0.011 0.12 0.15

basicmath rad2deg
No. of counters 2 5 NA

Error [%] 0.0051 0.0024 -

dijkstra
No. of counters 6 9 NA

Error [%] 0.012 2.02 -

fibcall
No. of counters 4 3 2

Error [%] 0.00000029 0.00000012 0.0031

cnt
No. of counters 4 9 2

Error [%] 0.080 0.25 0.11

duff
No. of counters 7 8 2

Error [%] 0.012 0.053 0.021

From TABLE X, MRACM provides highly accurate es-
timation with a small number of counters in FFT, fibcall,
cnt, and duff. MRACM can estimate with high accuracy
in benchmarks with various characteristics.

LP provides highly accurate estimation in dijkstra.
MRA provides highly accurate estimation in basic-
math rad2deg.

VI. Conclusions

When multicollinearity occurs and counters with high
and low correlation coefficients exist, MRACM provides
highly accurate estimation with a small number of coun-
ters and estimate with high accuracy in benchmarks with
various characteristics. Although the above conditions do
not meet, traditional LP or MRA method can be applied.
The future work will study a performance analysis

method of a small number of performance counters with
higher estimation accuracy for various benchmarks, inple-
ment more complex programs and estimate CPU cycles.

References

[1] “ Performance Monitoring Unit,”Cortex-A7 MPCore
Technical Reference Manual (Revision F),
Chapter 11, ARM, 2013.
https://developer.arm.com/documentation/ddi0464/f/
performance-monitoring-unit (Last access: Oct. 12, 2023)

[2] Teruaki Tanaka, Masanori Hashimoto and Yoshinori Takeuchi,
“ Linear Programming Based Reliable Software Performance
Model Construction with Noisy CPU Performance Counter Val-
ues,”SASIMI 2021, pp. 45–50, 2021.

[3] Ryota Hattori, Kosuke Kohara and Yoshinori Takeuchi,“Evalu-
ation and estimation of CPU cycles by multiple regression anal-
ysis considering multicolinearity,”(in Japanese), Technical re-
port of IPSJ, vol. 2022-EMB-61, no. 6, pp. 1-7, 2022.

[4] B. Case, “ SPEC2000 Retires SPEC92”, The Microprocessor
Report, vol. 9, 1995.

[5] C. Lee, M. Potkonjak and H. Mangione-Smith,“MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Com-
munications Systems,” Micro-30, November 1997.

[6] M.R. Guthaus, J.S. Ringenberg, D. Ernest, T.M. Austin, T.
Mudge and R.B. Brown,“MiBench: A free, commercially rep-
resentative embedded benchmark suite,” Proc. of the IEEE
Int’l Workshop on Workload Charac-terization (WWC-4), Dec.
2001.

[7] J. Gustafsson, A. Betts, A. Ermedahl and B. Lisper, “The
Mälardalen WCET benchmarks: Past, present and future,”In
10th International Workshop on Worst-Case Execution Time
Analysis (WCET 2010), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2010.

[8] Rance Rodrigues, Arunachalam Annamalai, Israel Koren and
Sandip Kundu,“A Study on the Use of Performance Counters
to Estimate Power in Microprocessors,”IEEE Transactions on
Circuits and Systems II: Express Briefs, pp. 882–886, 2013.

[9] Jordan Pattee and Byeong Kil Lee,“Design Alternatives for Per-
formance Monitoring Counter based Malware Detection,”2020
IEEE 39th International Performance Computing and Commu-
nications Conference (IPCCC), pp. 1–2, 2020.

[10] Reza Azimi, David K.Tam, LivioSoares and Michael Stumm,
“ Enhancing Operating System Support for Multicore Pro-
cessors by Using Hardware Performance Monitoring,” ACM
SIGOPS Operating Systems Review, Volume 43, Issue 2, pp.
56–65, 2009.

- 106 -


