
Iterative Linear Transformation to Reduce Compound Variables

Tsutomu Sasao
Department of Computer Science, Meiji University, Kawasaki, Japan

Abstract– A classification function is a multi-valued function,
where the function values for only a fraction of the input combi-
nations are defined. Many variables in such a function are redun-
dant, and can be eliminated. A variable that can be represented as
an EXOR of variables is called a compound variable. Using com-
pound variables, we can further reduce the number of variables.
This paper shows iterative methods to reduce the number of vari-
ables. It requires memory with the size O(nk), where n is the
number of input variables, and k is the number of the registered
vectors. Experimental results for various benchmark functions
show the effectiveness of the algorithms. These methods are use-
ful for embedded system, where the memory size is limited. Also,
they can be used as a pre-processor for other variable minimizers
to reduce computation time.

I. INTRODUCTION

A classification function is a multi-valued function, where
the function values for only a fraction of the input combina-
tions are defined. In such a function, many variables are redun-
dant, and can be eliminated. A variable that can be represented
as an EXOR of variables is called a compound variable. By
using compound variables, the number of variables to repre-
sent a classification function can be further reduced. Fig. 1.1
[3] shows a circuit to represent a classification function, where
L realizes linear functions i.e., compound variables, and G re-
alizes general functions. To reduce the number of compound
variables, we must find the best linear transformation. Various
algorithms [5] have been developed to solve this problem. In
general, to obtain a good solution, we need large memory and
much CPU time.

In this paper, we consider minimization algorithms of vari-
ables in classification functions, which are suitable for an em-
bedded system, where the memory and computation time is
limited. We introduce an algorithm called s-MIN that reduces
the number of variables by iteratively applying simple linear
transformations.

The rest of the paper is organized as follows: Section II
shows the definitions and basic properties of classification
functions and linear decomposition; Section III introduces col-
lision degree and shows its properties; Section IV shows an
iterative method for linear transformations to reduce the num-
ber of compound variables; Section V shows an example illus-
trating the algorithm; SectionVI reviews existing methods to
reduce the number of compound variables; Section VII shows
experimental results; Section VIII shows a method to use the
s-MIN method to reduce CPU time for other minimizers, and

X

n p

O np) O q2p)

q

Fig. 1.1. Linear decomposition.

TABLE 2.1
REGISTERED VECTOR TABLE FOR f

x1 x2 x3 x4 x5 x6 f
1 1 0 0 1 1 0
0 1 1 0 1 1 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
1 1 0 1 1 1 1
1 0 1 1 1 1 1
1 0 0 0 1 1 1
0 0 1 0 1 0 1

finally Section IX concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

Definition 2.1 Let n be the number of variables, B =
{0, 1}, D ⊂ Bn, m be the number of classes, and M =
{0, 1, 2, . . . ,m−1}. Then, a classification function is a map-
ping: f : D →M .

Example 2.1 Table 2.1 is a registered vector table. It shows
the function with n = 6, m = 2, and |D| = 8. Each vector
in the table is a registered vector. There are 26 possible input
combinations, but the function is defined for only 8 combina-
tions. For the other 64−8 = 56 combinations, function values
are undefined.

Next, we show a simple method to reduce the number of
variables in classification functions.

Example 2.2 The function f in Table 2.1 can be represented
by x1, x2, x3 and x4. That is, four variables are sufficient to

SASIMI 2024 ProceedingsR2-6

- 113 -

TABLE 2.2
f CAN BE REPRESENTED WITH x1, x2, x3 AND x4 .

x1 x2 x3 x4 x5 x6 f
1 1 0 0 1 1 0
0 1 1 0 1 1 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
1 1 0 1 1 1 1
1 0 1 1 1 1 1
1 0 0 0 1 1 1
0 0 1 0 1 0 1

TABLE 2.3
f CANNOT BE REPRESENTED WITH x3, x4, x5 AND x6 .

x1 x2 x3 x4 x5 x6 f
1 1 0 0 1 1 0 ∗
0 1 1 0 1 1 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
1 1 0 1 1 1 1
1 0 1 1 1 1 1
1 0 0 0 1 1 1 ∗
0 0 1 0 1 0 1

represent the function. As shown in Table 2.2, the first four
bits uniquely specify the function values.

However, the same function cannot be represented with
x3, x4, x5 and x6. Note that when (x3, x4, x5, x6) =
(0, 0, 1, 1), the value of f is not unique. In Table 2.3, the rows
with asterisks show inconsistency.

Consider the decomposition of the function shown in
Fig. 1.1, where L contains a linear function, while G contains
a general function. The cost of L is O(np), while the cost of
G is O(q2p). When n is large, the cost of L can be neglected.
The functions produced by the circuit L in Fig. 1.1 have the
form:

yi = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn,

where aj ∈ {0, 1}. yi is called a compound variable.∑n
i=1 ai is the compound degree. When the compound de-

gree is one, yi is called a primitive variable.

III. COLLISION DEGREE AND ITS PROPERTIES

In this section, we introduce collision degree to find a good
linear transformation.

Definition 3.1 Let f(X) be a classification function, where
X = {x1, x2, . . . , xn} is the set of variables in f . Let
X1 ⊂ X . Let �X1 be an ordered set of X1. Then, �X1 is a
partial vector of X . Suppose that the values of �X1 are set to
�a = (a1, a2, . . . , as), where ai ∈ B. Let N(f, �X1,�a) be the
number of different specified values of f . Then, the collision

degree is

CD(f : X1) = max
�a∈Bs

{
N(f, �X1,�a)

}
,

where s in Bs denotes the number of variables in X1.

TABLE 3.1
CLASSIFICATION FUNCTION f .

x1 x2 x3 f
1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 3

TABLE 3.2
CLASSIFICATION FUNCTION g.

y1 x2 x3 g
1 0 0 1
0 1 0 2
1 0 1 1
0 0 0 3

x

x

x

x3
x

Fig. 3.1. Maps for Classification Function.

Example 3.1 Consider the classification function f shown in
Table 3.1. We have:

N(f : (x1, x2), (0, 0)) = |{1, 3}| = 2,

N(f : (x1, x2), (0, 1)) = |{2}| = 1,

N(f : (x1, x2), (1, 1)) = |∅| = 0,

N(f : (x1, x2), (1, 0)) = |{1}| = 1.

Lemma 3.1 Consider the decomposition chart of f(X),
where X1 specifies the variables labeling the columns and
X − X1 denotes the variables labeling the rows. Then,
N(f, �X1,�a) shows the number of different specified values in
a column, and the collision degree CD(f : X1) is the maximal
number of different values in the columns.

Example 3.2 The map in the left-hand side of Fig. 3.1 can
be considered as the decomposition chart of the classification
function shown in Table 3.1. In this chart, the column variables
are X1 = {x1, x2}, and blank elements show don’t cares. The
number of different specified values in each column is, from
the left to the right, 2, 1, 0, 1. Note that the leftmost column
has the maximum number of different values, 2. Thus, CD(f :
{x1, x2}) = 2.

A classification function f(X) can be represented by a sub-
set X1 of X if every assignment of values to the variables X1

uniquely specifies the value of f .

- 114 -

TABLE 3.3
CLASSIFICATION FUNCTION f .

x1 x2 x3 f
0 0 0 3
1 0 0 1
0 1 0 2
0 0 1 1
1 1 1 3

TABLE 3.4
CLASSIFICATION FUNCTION g.

y1 y2 x3 g
0 0 0 3
1 0 0 1
0 1 0 2
1 1 1 1
0 0 1 3

x

x

x

x3

Fig. 3.2. Maps for Classification Function.

Theorem 3.1 Let f(X) be a classification function, and X1

be a proper subset of X . Then, f can be represented as a
function of X1, if

CD(f : X1) = 1.

Example 3.3 Consider the classification function g shown in
Table 3.2. This table is derived from Table 3.1 by replacing x1

with y1 = x1 ⊕ x3. Since CD(g : {y1, x2}) = 1, g can be
represented with only y1 and x2. The map in the right-hand
side of Fig. 3.1 shows g. For example, g can be represented as

G = 1 · y1 ∨ 2 · ȳ1x2 ∨ 3 · ȳ1x̄2,

where the symbol ∨ denotes the max operator, and
f(x1, x2, x3) = g(y1, x2).

However, f in Table 3.1 requires three variables to represent
the function:

F = 1 · x1x̄2x̄3 ∨ 2 · x̄1x2x̄3 ∨ 3 · x̄1x̄2x̄3 ∨ 1 · x̄1x̄2x3.

Note that the minterm in the lowest leftmost position of
Fig. 3.1 is moved to the rightmost position by the linear trans-
formation: y1 = x1 ⊕ x3.

Example 3.4 Consider the classification function f shown in
Table 3.3. In this case, f requires three variables. Here, we
consider the linear transformation:

y1 = x1 ⊕ x3, y2 = x2 ⊕ x3.

Table 3.4 shows the transformed function g.
The original function f is shown by the map in the left-hand

side of Fig. 3.2, while the transformed function g is shown
in the map in the right-hand side of Fig. 3.2, Since CD(g :
{y1, y2}) = 1, the function can be represented with only y1
and y2. In fact, the function can be represented as

G = 1 · y1 ∨ 2 · ȳ1y2 ∨ 3 · ȳ1ȳ2,

where f(x1, x2, x3) = g(y1, y2). Note that, for this function,
the previous transformation y1 = x1 ⊕ x3 cannot reduce the
number of variables.

Theorem 3.2 Let f(X) be a classification function. Let X1

be a proper subset of X . Then, to represent f(X), at least
�log2 CD(f : X1)	 compound variables are necessary in ad-
dition to the variables in X1.

Corollary 3.1 Let f(X) be a classification function, and let
X1 be a proper subset of X . A necessary condition that f be
represented by X1 and one compound variable is

CD(f : X1) = 2.

Corollary 3.2 Let f(X) be a classification function, and let
X1 be a subset of X . A necessary condition that f be repre-
sented by X1 and a pair of compound variables is

CD(f : X1) ≤ 4.

IV. S-MIN METHOD

To find a linear transformation that minimizes the number of
compound variables p in a classification function, is very diffi-
cult. Various heuristic methods are known [5]. Most methods
require a large amount of memory and CPU time.

Here, we use the s-MIN method1, where a set of s variables
in X1 is replaced with a set of s − 1 compound variables. If
the resulting set of variables represents f , perform this replace-
ment. In this section, we show the s-MIN method.

A. Algorithm

For simplicity, we consider only for the cases with s = 2
and s = 3.

Algorithm 4.1 (2-MIN)

1. Let X be a set of variables on which f depends.

2. For all possible pairs of variables in X , {xi, xj}, perform
the following operations while the number of variables
can be reduced.

3. Let X1 = X \ {xi, xj}. When CD(f : X1) > 2, discard
this pair.

4. Let X3 = X1 ∪ {y1}, where y1 = xi ⊕ xj . If CD(g :
X3) = 1, then g can be represented as g(X3) = f(X),
and Stop. Otherwise, discard this pair.

Algorithm 4.2 (3-MIN)

1. Let X be a set of variables on which f depends.

1This method was originally developed for index generation functions [4].
We found this method is also effective for classification functions.

- 115 -

2. For all possible triples of variables in X , {xi, xj , xk},
perform the following operations while the number of
variables can be reduced.

3. Let X1 = X \ {xi, xj , xk}. When CD(f : X1) > 4,
discard this triple.

4. Let X3 = X1 ∪ {yi, yj}, where

yi = xi ⊕ xk, yj = xj ⊕ xk.

If CD(g : X3) = 1, then g can be represented as
g(X3) = f(X), and Stop. Otherwise discard this triple.

Note that the solutions produced by Algorithms 4.1 and 4.2 are
local optimal.

B. Amount of Memory and Computation Time

Since Algorithms 4.1 and 4.2 use registered vector tables as
a data structure, the necessary memory size is O(nk), where
n is the number of variables, and k is the number of registered
vectors.

The total number of combinations to select s variables out of
n variables is

(
n
s

)
. In the computation of the collision degrees,

the registered vectors are sorted. Using quick sort, the average
time to sort k objects is k log2 k. Thus, the CPU time2 is pro-
portional to k log2 k. Let s be a small constant (i.e., s = 2 or
s = 3). Recall that

(
n
2

)
= n(n−1)

2 , and
(
n
3

)
= n(n−1)(n−2)

6 .
Thus, the total CPU time is O(nsk log k).

V. EXAMPLES

This section illustrates the algorithm for 2-MIN.

TABLE 5.1
ORIGINAL FUNCTION.

x1 x2 x3 x4 x5 f
0 1 1 1 0 1
1 0 1 0 1 1
1 0 1 1 0 1
1 1 1 0 0 1
1 1 1 0 1 1
0 0 0 0 1 2
0 0 0 1 0 2
0 0 1 0 0 2
0 0 1 1 1 2
0 1 0 0 1 3
1 0 1 1 1 3
1 1 0 0 1 3
1 1 0 1 0 3

TABLE 5.2
AFTER LINEAR TRANSFORM.
x1 x2 x3 y g
0 1 1 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 0 1
1 1 1 1 1
0 0 0 1 2
0 0 0 1 2
0 0 1 0 2
0 0 1 0 2
0 1 0 1 3
1 0 1 0 3
1 1 0 1 3
1 1 0 1 3

Example 5.1 Consider the 5-variable classification function
shown in Table 5.1. Note that no variable is redundant in the
table. Let X = (x1, x2, x3, x4, x5). Let the pair of vari-
ables be {x4, x5}. X1 = X \ {x4, x5}. Note that when

2Here, we assume that each object is represented by one word in the com-
puter.

(x1, x2, x3) = (1, 0, 1), f can take two different values 1 or
3. For other combinations, f takes a unique value. Thus,
CD(f : X1) = 2. By Corollary 3.1, there is a possibility to
reduce the variables. Let X3 = X1 ∪{y}, where y = x4⊕x5.
Note that CD(g : X3) = 1. Thus, g can be represented by X3

as shown in Table 5.2. However, after this, we cannot reduce
the number of variables.

Note that in Table 5.1, all the registered vectors are distinct.
However, in Table 5.2, identical registered vectors appear. For
example, (x1, x2, x3, y) = (0, 0, 0, 1) appears twice. Thus, the
linear transformation not only reduces the number of variables,
but also reduces the number of distinct registered vectors.

VI. REVIEW OF EXISTING METHODS

Various methods to reduce the number of (compound) vari-
ables in classification functions have been developed [5]. In
this part, we briefly review three methods.

A. Minimization of Primitive Variables

This method reduces the number of primitive variables. Im-
purity measure [5] is used to select important variables. A
reduction of variables corresponds to reduce the depth of the
classification tree [1]. The impurity measure is used to order
the variables in the classification tree.

Algorithm 6.1 (A reduction of primitive variables)
Given a classification table of a classification function f .

1. Compute the impurity measure μ(�ei) for i = 1, 2, . . . , n.
Note that �ei denotes the unit vector, where only the i-th
element is 1, and other elements are 0s.

2. Assume that μ(�ei) is the minimum. Let �a← ei. �a shows
the set of selected variables.

3. Select a variable xj from the remaining set of variables,
so that the measure is minimized for the resulting classi-
fication tree. Let �a← �a ∨ �ej .

4. If μ(�a) > 0, then go to step 3, else stop.

The method is very fast. The memory size for the algorithm is
O(nk), where n is the number of input variables, and k is the
number of registered vectors.

B. Minimization of Compound Variables with Degree Two

This algorithm first generates all the compound variables
with degree two, and then selects necessary variables using
the impurity measure. The number of compound variables is
n(n− 1)/2. The size of memory for the algorithm is O(n2k).

Algorithm 6.2 This algorithm is similar to Algorithm 6.1.
In the registered vector table, append the compound vari-
ables with degree two. Thus, the total number of variables
is n+

(
n
2

)
= (n+1)n

2 .

- 116 -

C. Iterative Linear Transformation using Difference Vectors

This algorithm first generates the set of difference vectors
Df , and then select linear transformations using Df , itera-
tively.

Definition 6.1 In a classification function f , let f(�a)
= f(�b),
where �a,�b ∈ D, �a
= �b, and D is the set of registered vectors.
Then, the vector �d = �a ⊕ �b is a difference vector, where ⊕
denotes the bitwise EXOR operator. The set of all difference
vectors is denoted by Df .

Lemma 6.1 Let f : D → M , M = {0, 1, . . . ,m − 1} be
a classification function. Let |Df | be the number of distinct
difference vectors. Then,

|Df | ≤
∑
(i<j)

kikj ,

where i, j ∈ {1, 2, . . . ,m}, and ki is the number of vectors
�a ∈ D, such that f(�a) = i.

Algorithm 6.3 (Reduction of Compound Variables)

1. Derive the set of difference vectors Df of an n-variable
function.

2. If |Df | = 2n−1, then stop, since reduction is impossible.

3. Obtain a non-zero vector �d ∈ Bn \Df with the minimum
weight3.

4. Remove one variable from �d, and apply the linear trans-
formation to the function.

5. Let n← n− 1, and go to step 1. If n = 1, Stop.

The number of distinct difference vectors is O(k2). Thus,
the size of memory for the algorithm is O(nk2). It produces
very good solutions, but requires large memory size and much
CPU time.

VII. EXPERIMENTAL RESULTS

To investigate the performance of the s-MIN method, we
reduced the compound variables for various benchmark func-
tions [5]. Table 7.2 shows the results. The first four column
shows the properties of the function. The column headed with
Name shows the function name; the column headed with n
shows the number of variables in the original function; the col-
umn headed with m shows the number of classes; and the col-
umn headed with k shows the number of the registered vectors.
The fifth column headed with ALG1 shows the number of the
primitive variables obtained by Algorithm 6.1. The sixth col-
umn headed with ALG2 shows the number of the compound
variables with degree two obtained by Algorithm 6.2.

The next three columns headed with ALG3 show the re-
sult of Algorithm 6.3. The column headed with Vari shows

3The weight of a vector is the number of 1’s in the vector.

the number of compound variables; the column headed with
Max shows the maximum compound degree; and the column
headed with AVG shows the average compound degree.

The next three columns show the results for 2-MIN. The last
three columns show the results for 3-MIN.

The boldface numbers in the bottom row of Table 7.2 show
the total numbers of variables. From these, we can observe the
tendency:

ALG1 > 2-MIN > ALG2 > 3-MIN > ALG3.

Note that 3-MIN produces solutions with fewer variable than
2-MIN. However, 3-MIN produces compound variables with
higher degrees. Note that some entries do not satisfy the above
relation.

TABLE 7.1
COMPLEXITY OF REDUCTION ALGORITHMS

Algorithm Degree CPU Time Memory
Algorithm 6.1 1 O(nk log k) O(nk)
Algorithm 6.2 2 O(n2k log k) O(n2k)
Algorithm 6.3 3+ O(nk2) O(nk2)

2-MIN 3+ O(n2k log k) O(nk)
3-MIN 3+ O(n3k log k) O(nk)

Table 7.1 compares complexities of minimization algo-
rithms, where n is the number of variables in the original func-
tion, and k is the number of registered vectors. Algorithm 6.1
requires the shortest CPU time, while Algorithm 6.3 requires
the longest CPU time, when k is large.

VIII. AN APPLICATION AS A PRE-PROCESSOR

Table 7.2 shows that Algorithm 6.3 obtains the best solu-
tions. Unfortunately, it is time-consuming for functions with
large k, as shown in Table 7.1. In this part, we use 3-MIN
to reduce the total CPU time for the MNIST28×28 function
for illustration. The function implements a handwritten digits
recognition circuit [2]. It has n0 = 784 variables, k = 59981
registered vectors, and m = 10 classes. Algorithm 6.1 yields
n1 = 37-variable solution in 57 seconds. While, Algorithm 6.3
yields an n3 = 25-variable solution in 2718 seconds, which is
very time-consuming.

However, we can reduce the CPU time by using 3-MIN as
shown in Fig. 7.1. First, we apply Algorithm 6.1 to obtain an

Fig. 7.1. Reduction of CPU time for MNIST 28× 28.

- 117 -

TABLE 7.2
RESULTS OF LINEAR TRANSFORMATIONS

Existing Methods Proposed Methods
Function Data ALG1 ALG2 ALG3 2-MIN 3-MIN

Name n m k Vari Vari Vari Max AVG Vari Max AVG Vari Max AVG
4350WORDS 75 14 4, 350 43 25 18 14 3.94 21 10 2.05 20 16 4.85
CHEMICAL ELEMENTS 60 7 118 11 9 9 3 1.44 11 13 2.55 9 29 5.60
CHESS3196 75 2 3, 196 30 21 15 11 3.67 18 6 1.67 16 11 4.06
CIFAR32× 32 1024 2 9, 930 58 30 19 22 7.47 25 10 2.32 22 22 8.05
COMPANIES 30 9 3, 700 21 19 18 3 1.39 20 4 1.40 19 9 3.21
CONNECT-4 126 3 67, 557 61 38 22 23 11.82 34 6 1.79 28 22 7.43
COUNTRIES 60 6 197 15 10 10 4 2.30 12 15 3.17 11 33 12.91
LETTER-RECOG. 256 26 20, 000 51 32 21 17 9.05 36 6 1.42 28 17 5.36
LYMA 59 4 147 11 8 8 3 1.62 9 3 1.22 8 3 1.62
MNIST14× 14 196 10 58, 191 45 29 25 10 4.00 32 5 1.41 28 11 3.46
MNIST28× 28 784 10 59, 981 37 29 25 7 2.88 30 3 1.23 28 4 1.82
MNIST2CLASS 784 2 59, 984 35 25 24 9 3.08 31 3 1.13 27 6 2.00
MNIST8× 8 64 10 3, 686 23 19 17 5 2.24 20 10 2.10 19 22 13.05
POKER 85 10 25, 010 61 37 21 23 11.95 43 5 1.42 23 23 9.39
RANDOM4000 30 4 4, 000 21 20 18 4 1.72 20 2 1.47 19 9 3.11
SPAM MAIL FILTER 128 2 20, 000 23 22 22 2 1.36 23 1 1.00 23 1 1.00
SPLICE 240 3 3, 174 18 17 15 4 2.00 18 1 1.00 17 2 1.12

Total 564 391 307 71.93 403 28.35 345 88.04

n1 = 37-variable solution. Second, we apply 3-MIN to obtain
an n2 = 28 variable solution in 42 seconds. And, finally we
apply Algorithm 6.3 to obtain an n3 = 25-variable solution in
747 seconds. In this way, the CPU time for Algorithm 6.3 can
be reduced to less than one third.

The 3-MIN reduced both the number of input variables n,
and the number of distinct registered vectors k. This reduced
the number of distinct difference vectors. The number of
distinct difference vectors in the result of Algorithm 6.1 is
1,226,244,862. However, after applying 3-MIN, the number
of distinct difference vectors is reduced to 259,485,042. Also
the number of variables is reduced from 37 to 28, and the num-
ber of the iterations is reduced from 12 to 3. These account for
the reduction of the CPU time.

We used a computer with an INTEL Core i7, 7700, 3.65GHz
CPU, and 64 GB main memory, on Windows 10.

IX. CONCLUSION

This paper presented minimization algorithms for (com-
pound) variables to represent classification functions. They
require small memory and time complexities.

The main results are as follows:

1. 2-MIN performs a linear transformation with type

xi ← xi ⊕ xj

iteratively, to reduce the number of variables.

2. 3-MIN performs a linear transformation with type

xi ← xi ⊕ xk, xj ← xj ⊕ xk

iteratively, to reduce the number of variables.

3. They are fast and require small memory size.

4. Experimental results using various benchmark functions
show that 3-MIN produces solutions with fewer com-
pound variables than 2-MIN, on the average. However,
3-MIN tends to produce solutions with higher compound
degrees.

5. These algorithms are suitable for embedded systems and
pre-preprocessing for further minimization.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for Sci-
entific Research of the JSPS. The author thanks Prof. Jon
T. Butler and Dr. Alan Mishchenko for discussion.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

[2] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “ Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
Vol. 86, No. 11, pp. 2278-2324, November 1998.

[3] E. I. Nechiporuk, “On the synthesis of networks using linear trans-
formations of variables,” Dokl. AN SSSR, vol. 123, no. 4, Dec. 1958,
pp. 610-612 (in Russian).

[4] T. Sasao, “A reduction method for the number of variables to rep-
resent index generation functions: s-Min method,” ISMVL, May 18-
20, 2015, Waterloo, Canada, pp. 164-169.

[5] T. Sasao, Classification Functions for Machine Learning and Data
Mining, Springer Nature, Aug. 2023.

- 118 -

