
FPGA-Based Deep-Pipelined Architecture for Vision Transformer’s
Multi-Head Attention

Hasitha Muthumala Waidyasooriya
and Masanori Hariyama Daisuke Tanaka

Graduate School of Information Sciences Department of Mechanical Engineering
Tohoku University National Institute of Technology, Niihama College

6-3-09, Aramaki-Aza-Aoba, Aoba, Sendai, 7-1, Yagumo, Niihama,
Miyagi 980-8579, Japan Ehime 792-8580, Japan

{hasitha, hariyama}@tohoku.ac.jp d.tanaka@niihama-nct.ac.jp

Abstract— Multihead attention is a crucial com-
ponent within the Vision Transformer architecture,
which plays a significant role in the overall process-
ing. While multihead attention contains a substan-
tial degree of parallelism, it comes with a consider-
able demand for memory access. This paper pro-
poses an FPGA-based deep pipelined architecture to
increase the processing speed while reducing the ex-
ternal memory access. According to the experimental
results, proposed accelerator is faster than the mul-
ticore CPU implementation. We also discuss the po-
tential to increase the processing speed further.

I. Introduction

The Transformer architecture [1] represents a
groundbreaking development in the field of deep learn-
ing. Its versatility has led to its widespread applica-
tion in various machine learning domains, spanning
natural language processing and computer vision. No-
tably, the Vision Transformer, as introduced in Doso-
vitskiy et al.’s work [2], has gained prominence in im-
age analysis, challenging the conventional dominance
of Convolutional Neural Networks (CNNs). A crucial
component within the Vision Transformer is multi-
head attention, which plays a significant role in the
overall processing. Given its substantial computa-
tional requirements, power-efficient implementation of
multihead attention is extremely important.

While multihead attention computation inherently
boasts substantial parallelism, it comes with a consid-
erable demand for memory access. This intense mem-
ory access requirement can substantially elevate power
consumption. FPGAs (Field-Programmable Gate Ar-
rays) are reconfigurable VLSI (Very-Large-Scale In-
tegration) devices that offer power-efficient process-
ing through the creation of customized accelerators
tailored to specific tasks. FPGAs provide a solution
through pipeline parallel processing, a technique that
segments the entire computation into multiple stages
connected by storage elements such as buffers. Inter-
mediate data from the preceding stage is stored within
these buffers and serves as inputs for the next stage.

Consequently, several stages of the computation can
operate in parallel while sharing intermediate results.
This approach unlocks a significant degree of paral-
lelism while effectively minimizing external memory
access, resulting in notably lower power consumption.

Fig. 1. Transformer encoder architecture.

In this paper, we introduce a deeply pipelined ac-
celerator architecture designed for multihead atten-
tion tasks. Proposed architecture is characterized by
a substantial number of stages, each responsible for
processing a small segment of the overall computa-
tion. Importantly, all of these stages operate in paral-
lel, accommodating different input data streams while

SASIMI 2024 ProceedingsR2-15

- 160 -



delivering a high degree of parallelism with minimal
memory access requirements. We discuss the details
of our proposed accelerator architecture and explore
strategies for scaling it further to increase parallel
processing. To validate our approach, we have im-
plemented the proposed architecture on the BittWare
IA-840F FPGA board, equipped with an Intel Ag-
ilex 7 FPGA. Our experimental results demonstrate
that the proposed accelerator outperforms an opti-
mized 20-core CPU implementation while consuming
less than 20% of the available floating-point comput-
ing resources. This suggests that there is significant
untapped potential for boosting processing speed by
harnessing the rest of the FPGA’s resources.

II. FPGA architecture for multihead
attention

Multihead attention consists of multiple “heads”,
each of which independently learns to attend to differ-
ent aspects of the input data. Therefore, this model
can pay attention to various parts of the input se-
quence and weigh them differently. In a multihead at-
tention mechanism, the input sequence is transformed
into multiple sets of query, key, and value vectors for
each head. As shown in Fig.2, each head calculates
attention scores between the queries and keys, and
these scores are used to weight the values, resulting
in multiple context vectors. These context vectors
from different heads are then concatenated and lin-
early transformed to produce the final output.

Fig. 2. Flow-chart of the self attention process belonging a single
head.

A. Spatial and temporal parallelism of multihead atten-
tion computation

The following equations show the computations of a
single head of the self attention mechanism.

Aheadi = softmax

(
QKT√
(dK)

)
× V

Q = X ×WQ

K = X ×WK

V = X ×WV

Input data X is obtained after the positional encod-
ing of the image data. WQ, WK , and WV represent
the weights for the query, key, and value data, respec-
tively. These computations are carried out for all the
images in a batch and are repeated for all heads. The
computations for all heads can be executed in parallel.
For each head, all images within a batch can be simul-
taneously processed. Additionally, the three matrix
multiplications required to generate Q,K, and V can
also be processed in parallel. Each of these matrix
multiplications can be further optimized for a mas-
sive degree of parallelism. Consequently, the degree
of spatial parallelism in this process is exceptionally
high.

As shown in Fig.2, the attention mechanism involves
multiple stages. Therefore, it is possible to compute
multiple input images, belonging to the computation
of multiple heads, in different stages simultaneously.
We call this temporal parallelism. Fig.3 shows a time-
line of pipeline processing of multiple images. If we
can divide the processing into more stages, it is pos-
sible to increase the temporal parallelism further.

Fig. 3. Temporal parallelism of multiple images processed in
multiple heads.

B. Deep-pipelined architecture

Fig.4 illustrates the FPGA architecture we propose.
This architecture is composed of several stages, with
each stage containing a buffer. Notably, the inter-
mediate results from the preceding stage are stored
within these buffers. In the final stage, the output
buffer concatenates the data from all heads, deliver-
ing the final output.

The number of stages can be expanded by subdi-
viding the processing within each stage, allowing for
a finer-grained approach to computation. The matrix
multiplication is executed using a systolic array ar-
chitecture, as shown in Fig.5. This approach enables
concurrent processing within each of these stages, re-
sulting in a substantial increase in processing speed,
while effectively reusing intermediate data among dif-
ferent stages.

Further memory access reduction can be achieved
through the temporal storage of reusable data. Con-
sidering that the input image data are reused across
all heads, they are initially accessed from external
memory and subsequently utilized while being stored
within the FPGA. Furthermore, the weight matrices,

- 161 -



Fig. 4. Architecture of self attention computation of a single head.

Fig. 5. Systolic array architecture for matrix multiplication.

Fig. 6. FPGA accelerator architecture

which can be shared among all images in a batch, are
also stored within the FPGA, minimizing the need for
repeated external memory access and enhancing over-
all computational efficiency.

Fig.6 shows the overall architecture. The input im-
age data and weights are initially stored in the exter-
nal memory. Then a portion of the data are trans-
ferred to the internal memory of the FPGA. Those
data are repeatedly accessed by the kernel pipeline.
The output data of all heads are stored in the internal
memory. After the outputs of all heads are received,
those data are transferred back to the external mem-
ory and accessed by the CPU.

TABLE I
Processing time of 12 heads.

Image size 32
Number of channels 3
Patch size 8
MLP size 3072
Hidden size 768
Number of heads 12
Mini batch size 200

III. Evaluation

For the evaluation, we use BittWare IA-840F FPGA
board that contain Intel Agilex-7 AGF027 FPGA [3].
The FPGA kernels are compiled using Intel FPGA
SDK for OpenCL version 2023.1 with Quartus prime
pro 21.4. The CPU used for the comparison is In-
tel Xeon Silver 4316 with 20 cores. The CPU version
of the multihead attention computation is compiled
using Intel OnelAPI DPC++/C++ compiler 2023.1.
We use Intel mkl (math kernel library) to accelerate
matrix multiplications. CIFAR-10 dataset is used for
the evaluation [4]. Table I shows the encoder param-
eters.

Compared to the optimized CPU implementation,
the FPGA processing is 1.17 times faster as shown in
Table II. The resource utilization is shown in Table
III. The maximum resource usage is for the RAM
blocks. RAM blocks are used to store a portion of
inputs, outputs and intermediate results. Since only
19% of the DSP resources are used for the compu-
tation, there is a huge potential to increase the pro-
cessing speed significantly. Note that increasing par-
allelism does not result in any increase of the RAM
blocks, since we do not need to increase the storage
any further. The output data are exactly the same as
the result of CPU that is done using single-precision
floating-point computation.

- 162 -



TABLE II
Comparison of the processing time for 12 heads.

Intel Xeon 4316 (20 core) 163 (ms)
Intel Agilex IA-840F FPGA board 139 (ms)

TABLE III
Resource utilization.

Resource Utilization Percentage
Registers 1,675,326
Logic 505,531 55%
DSP 1,644 19%
RAM blocks 9,197 69%
Memory 19.3 MB 60%

IV. Conclusion

Our proposal introduces a deeply pipelined archi-
tecture for multihead attention mechanism. Notably,
it outperforms a parallel CPU multicore implementa-
tion, demonstrating a significant potential for further
speed improvements. Moreover, the proposed acceler-
ator minimizes external memory access, offering sub-
stantial energy efficiency gains. Looking ahead, our
future work aims to extend this approach to imple-
ment the entire Vision Transformer architecture on
an FPGA.

Acknowledgment

This research is partly supported by MEXT KAK-
ENHI, grant number 20H04197.

References

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need. Advances in neural information pro-
cessing systems, 30, 2017.

[2] A Dosovitskiy, L Beyer, A Kolesnikov, D Weis-
senborn, X Zhai, and T Unterthiner. Transform-
ers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[3] BittWare. IA-840F. https://www.bittware.com/

products/ia-840f/, 2023. [Online; accessed 31-Oct.-
2023].

[4] The CIFAR-10 dataset. 2023. [Online; accessed
31-Oct.-2023].

- 163 -


