
An Efficient Approach to Iterative Network Pruning
Chuan-Shun Huang1, Wuqian Tang1, Yung-Chih Chen2, Yi-Ting Li1, Shih-Chieh Chang1, and Chun-Yao Wang1

1National Tsing Hua University, Taiwan, ROC
2National Taiwan University of Science and Technology, Taiwan, R.O.C.

Abstract—Network pruning is a technique to minimize the
number of parameters of large neural networks. Network
pruning can be performed once or multiple times. One-shot
network pruning is easy to reach the required sparsity, but
the corresponding accuracy drop may be unacceptable with
respect to different goals. On the other hand, iterative network
pruning trims and retrains the network iteratively to maintain the
accuracy, but suffering from the long runtime of this repetitive
procedure. In this work, we propose an efficient approach to
network pruning by removing redundant trainings. Experimental
results show that our approach reduces 25% to almost 60% of
training time with comparable network accuracy as compared
to the state-of-the-art.

I. INTRODUCTION

Deep Neural Networks (DNNs) related applications have
become increasingly popular in the past few years. Related
research and applications are springing up and gain attention
from both academia and industries. These DNN applications
brought convenience to various fields. However, the large size
of DNN is still a challenge for engineers when deploying
DNNs on devices, e.g., smartphones, extended reality (XR)
headsets, or other wearable devices.

A solution to reducing the size of DNNs is network pruning
[7]–[9], [16], [20], whose goal is to eliminate components or
weights from neural networks while preserving the accuracy.

To recover from the possible accuracy drop after pruning,
retraining plays an important role. Fine-tuning (FT) [8] is a
conventional method by retraining the pruned network with
the minimum learning rate, which was used in the training
schedule of the original network. Another retraining technique
named learning rate rewinding (LRW) [23] adopts the training
schedule of the original network, and set its retraining schedule
based on the last few epochs. LRW shows a better accuracy
than fine-tuning. However, recent research [15] shows that by
using cyclical learning rate (CLR) [25], [26], a method that
decreases the initial learning rate with cosine function, in its
training schedule, it outperforms previous techniques with a
much better accuracy recovery.

Unfortunately, retraining techniques still suffer from a long
runtime when performing iterative pruning. Iterative pruning
is conducted by pruning and retraining the network repeatedly
until it reaches the required sparsity. This technique is capable
of preserving the accuracy, but performing the retraining
process iteratively is very time-consuming. One-shot pruning
[8] is a faster method to perform network pruning by setting
the target sparsity and retraining once. However, the accuracy
loss might be a serious concern when setting to a high sparsity.

[3] observed that pruning at most 20% weights from the
network per iteration balances efficiency with network accu-
racy. This method is still used by recent research [4], [15],
[23] that seeks for better retraining techniques. However, as
better retraining techniques proposed, [3] can be further im-
proved since this method was not combined with those better
retraining techniques. By comparing the accuracy of pruned
networks retrained with FT [8] and CLR [26] separately, we
found that the 20% pruning ratio limit [3] is unnecessary when
pruning at a low network sparsity. We also observed that better
retraining techniques can further extend the pruning ratio in
the first pruning iteration.

In this work, our pruning strategy focuses on unstructured
pruning [8], which is a network pruning technique that trims
connections between neurons only. To save time from the tra-
ditional iterative pruning, our method reduces retraining time
by extending the pruning ratio of the first pruning iteration.
Our experimental results show that network pruning iterations
of [3] at low sparsity can be combined into one step. After
the first iteration, we at most need two more iterations with
small pruning ratio to complete the process, where [3] usually
needs 4 or 5 iterations to reach high sparsity. Our method costs
25% to 60% time and is still able to get comparable results
as compared to [3].

The main contributions of this work are summed up as
follows:

• We propose a method that uses fewer iterations than the
traditional iterative pruning method to complete network
pruning.

• Our method requires less runtime and still get decent
results when applied on various datasets and network
structures.

The rest of this paper is organized as follows. We introduce
the background of network pruning and review previous works
in Section II. We present our approach in Section III. In
Section IV, we show our experimental results. Finally, Section
V draws the conclusion.

II. PRELIMINARIES

In this section, we introduce the concept of network pruning,
magnitude-based weight pruning, retraining techniques, one-
shot pruning, and iterative pruning.

A. Network Pruning
Network pruning can be classified into two categories –

unstructured pruning and structured pruning. Unstructured
pruning [2], [8] removes the less important connections in

SASIMI 2024 ProceedingsR3-6

- 195 -

the network, which is usually performed by changing the
weights to zero. Hence, it is also called weight pruning.
The result of unstructured pruning is a network with more
sparse matrices. Although the size of pruned network does not
necessarily become smaller, its computation can be accelerated
by hardware that supports sparse matrix computation, i.e.,
the hardware compacts the sparse matrix into a smaller and
dense matrix such that the calculation is faster. Structured
pruning [11], [12], [17], [28], on the other hand, removes less
important neurons in the network. This is usually performed by
pruning weights in groups, such as components like channels,
filters, or layers. By removing the components, the pruned
network has fewer parameters than the original network.
However, pruning neurons might remove both important and
unimportant connections at the same time, which may lead to
more accuracy loss [6].

B. Magnitude-Based Weight Pruning

Magnitude-based Weight Pruning (MWP) is an efficient un-
structured pruning algorithm proposed by [8]. MWP compares
the absolute values of the weights, and considers the smaller
value as “carrying less information”. Weights with smaller
magnitudes would be removed, or change into zero. MWP
removes these weights in an ascending order in the network.
In this work, we globally consider the absolute values of
all trainable weights across the whole network. However, for
ResNets or networks with a single fully-connected layer, we
perform MWP only on convolution layers.

C. Retraining Techniques

After pruning a network, its accuracy may decrease due to
parameter modification. To change the weights that fits the
pruned network, there are several techniques used to retrain
the networks for regaining accuracy.

1. Fine-Tuning: Fine-tuning (FT) [8] is a retraining method
that sets a small constant learning rate to retrain the pruned
network. The learning rate that FT uses is based on the
learning rate schedule for training the initial network. To train
an initial network, a conventional method is to train with a
multi-step learning rate schedule. These schedules usually start
with a large learning rate α, e.g., 0.1, and use it to train the
initial network for several epochs. Then, a smaller learning
rate would be applied, usually one-tenth of the previous one,
for few more epochs. At last, the smallest learning rate is used
to train the network. An example of this kind of learning rate
schedule is listed in TABLE III for training ResNets [10]. To
fine-tune a pruned ResNet, we would set α = 0.001, as our
constant FT learning rate.

2. Cyclical Learning Rate: Cyclical Learning Rate (CLR)
[25], [26] is a learning rate schedule that converges networks
rapidly. CLR’s schedule can be divided into two parts: rising
and falling. The rising part starts with a small learning rate
and increases to a prespecified learning rate in few epochs.
This process is also known as warm up. The falling part starts
from the prespecified learning rate, and decreases with a cosine
function through several epochs. The rising and falling parts
can be performed alternately for many cycles. However, [15]

Fig. 1: One-shot and iterative pruning results of ResNet-56
on CIFAR-10 using MWP [8] and retrained by FT/CLR for
20 epochs, respectively. The retraining is applied after each
iteration in the iterative pruning.

uses 1-cycle CLR to retrain pruned networks. [15] observed
that 1-cycle CLR converges the network faster and gets a better
accuracy than FT.

D. One-Shot Pruning and Iterative Pruning

A standard network pruning process starts with a well-
trained original neural network. Next, it applies a pruning
algorithm, e.g., MWP, on this network to reach a target spar-
sity. Finally, it retrains the pruned network with a retraining
technique, e.g., CLR, for several epochs to regain the accuracy
loss.

For one-shot pruning [8], [17], network pruning and retrain-
ing are both conducted once. That is, pruning the network
to the required sparsity in one move, then retrain the model
only once. The advantage of one-shot pruning is time saving.
However, when we aim for a high network sparsity, the
accuracy is usually unrecoverable due to the massive changes
of network parameters. The sparsity that the one-shot pruning
is able to remain acceptable accuracy depends on the network
structure, pruning algorithm, and retraining techniques. For
instance, a pruned network can reach a higher sparsity with
one-shot pruning when it is retrained with CLR rather than
with FT.

However, even with a decent pruning or retraining tech-
nique, one-shot pruning would fail and cause serious accuracy
loss when targeting at a certain high level of sparsity.

Iterative pruning [8], [17] repeats the process of pruning
and retraining for multiple times until the network reaches the
target sparsity. By removing a smaller percentage of weights
one time, it is easier to retrain the pruned network and regain
accuracy. With the iterative pruning, it is much easier to remain
network accuracy at a high sparsity, but the process is very
time-consuming.

III. THE PROPOSED APPROACH

The idea of iterative pruning is to prune a portion of
parameters, retrain the pruned network to regain accuracy such
that it is able to withstand accuracy loss in the next iteration.

- 196 -

TABLE I: Results of iterative pruning for ResNet-56 on CIFAR-10 with different prune rates for the first iteration.

Network Acc Ori.(%) Pruning Schedule(%) Accuracy(%) Epochs/Iter Total Epochs Epochs↓(%)

20, 40, 60, 80 93.46 ± 0.13 20 80 0

ResNet-56 93.22 40, 60, 80 93.47 ± 0.15 20 60 25

60, 80 93.68 ± 0.17 30 60 25

TABLE II: Results of iterative pruning for ResNet-56 on CIFAR-10 when aiming for 90% sparsity.

Network Acc Ori.(%) Pruning Schedule(%) Accuracy(%) Epochs/Iter Total Epochs Epochs↓(%)

20, 40, 60, 80, 90 93.31 ± 0.09 40 200 0

ResNet-56 93.22 80, 90 93.21 ± 0.03 80 160 20

70, 80, 90 93.30 ± 0.18 50 150 25

[3] prunes 20% of weights in the network per iteration until
reaching a required sparsity, and this method was also adopted
in several studies [4], [15], [18], [23]. However, we found that
this process can be accelerated by digging into the potential
of the 1-cycle CLR[15], [26].

A. High Pruning Ratio for the First Iteration

When pruning at a low sparsity, the accuracies after retrain-
ing are similar for both one-shot and iterative pruning, e.g.,
for ResNet-56 [10] on CIFAR-10 [14] as shown in Fig 1. The
accuracy is almost the same for one-shot and iterative pruning
under 40% sparsity. If we aim for a 40% sparsity network,
using one-shot pruning costs only half time of iterative pruning
while having a good outcome. This phenomenon inspires us to
use a larger prune ratio at the first iteration of iterative pruning.

To verify if using a larger pruning ratio for the first iteration
is possible, we set our target sparsity as 80%, where the work
[3] would take 4 iterations of pruning and retraining. We
increase the prune ratio to 40% in the first iteration, and the
result is shown in TABLE I. Pruning 40% weights in the first
move has a similar network accuracy compared to pruning
20% weights evenly in all iterations, but only requires 75%
training epochs.

According to Fig 1, we can also notice one-shot pruning
with CLR outperforms both methods that retrains with FT,
and the ability of CLR to recover the accuracy at high network
sparsity is remarkable. By applying more retraining efforts for
high sparsity network pruning, we can further elevate the prune
ratio at the first iteration and still able to remain comparable
performance. As shown in TABLE I, if we apply 10 more
epochs for retraining at each iteration, we can set a 60%
pruning ratio in the first iteration and requires 75% training
epochs.

Previous experimental results lead to our method: For a
given target network sparsity n%, we set our first iteration
pruning ratio m%. We finish the network pruning process in
the next iteration, where we prune the retrained network once
more to reach n% sparsity. Thus, we can complete iterative
pruning in 2 iterations.

We set the value of m as a smaller number than n, where
5 ≤ n – m ≤ 10. We do not want n – m, or the pruning

ratio increased for the second iteration pruning to be too large;
otherwise, it might lead to an unrecoverable accuracy drop
when pruning to a high target sparsity. In our experiment, we
set the value of m as the largest multiples of ten or five that
satisfies the mentioned formula.

B. Take an Extra Step Back to a Resilient Point
Over-parameterized neural networks are often easier to

retrain than networks with fewer parameters [21] after pruning.
These large networks also have more tolerance when pruning a
large portion of weights in the first iteration. When aiming for
a high sparsity with our method, the pruning ratio m% in the
first iteration can be set as 80% for large networks like VGG-
nets [24]. However, networks with much fewer parameters like
ResNet-56 on CIFAR-10, as shown in Fig 1, 80% sparsity is
about the limit for CLR to recover the accuracy. By using
more retraining time, we can regain accuracy to the original
one at 80% sparsity, but not able to push the accuracy even
higher to endure further network pruning.

When handling these small models, we provide one extra
step back: If the first pruning ratio m% cannot get a decent
accuracy after retraining with CLR, we set a pruning ratio
k%, which replaces m% as the first iteration pruning ratio.
The k% stands for a resilient point, where it becomes much
more difficult to regain network accuracy if we set a sparsity
number larger than k to perform the first pruning move.

Our method then becomes a 3-iteration network pruning:
pruning to k% sparsity, or the resilient point first, m%
sparsity afterwards, and finally to the target sparsity n%. For
larger models, the value of k is usually the same as m, which
is still considered as a 2-iteration network pruning.

From the experimental results of [3], setting the pruning
ratio per iteration smaller preserves the accuracy better. How-
ever, if the pruning ratio chosen is too small, the whole
iterative pruning process then becomes extremely time con-
suming. Thus, we search the k value by subtracting 10 from
m repeatedly to lower our search time. In our experiment, we
can usually find the resilient point in the first search, and we
at most searched two times for the ResNet-110 on CIFAR-10
case.

Similar concepts have also been mentioned in [17] when
pruning filters across different layers. [17] shows that layers

- 197 -

TABLE III: Training configurations for the unpruned networks in the experiments.

Dataset Network |Param| Optimizer Learning Rate (t = training epoch)

Nesterov SGD

α =





0.1 t ∈ [0, 80)
0.01 t ∈ [80, 120)
0.001 t ∈ [120, 160]

CIFAR-10 ResNet-56 0.85M β = 0.9

Batch size: 64

CIFAR-100 ResNet-110 1.72M Weight decay: 0.0001

Epochs: 160

Nesterov SGD

α =



0.05 · 1

2

⌊ t
30

⌋ t ∈ [0, 300]

β = 0.9

CIFAR-10 VGG-16 15.2M Batch size: 128

Weight decay: 0.0005

Epochs: 300

Adam

α =





0.001
2

· (1 + cos(t mod 10
9

)π) t ∈ [0, 50]

β1 = 0.9

EgoGesture R(2+1)D-18 31.3M β2 = 0.999

Batch size: 16

Epochs: 50

that are insensitive to network pruning can be pruned by
one-shot and still able to regain accuracy easily. However,
sensitive layers should be pruned iteratively; otherwise the
accuracy drop would be unrecoverable. Applying this concept
to our situation, a network remains resilient to network pruning
before it reaches the resilient point, or k% sparsity, where
we are able to retrain smoothly; but pruning more weights
will cause the accuracy drop visibly. Hence, we need to take
smaller pruning steps afterwards, like pruning with a small
portion to m% and n%.

As shown in the row 2 of TABLE II, we set m = 80%, n =
90%, but it is not able to recover the accuracy drop completely
since pruning 80% in the first move is too much for CLR to
retrain well. We set k = 70%, however, and perform a 3-
iteration network pruning: 70%, 80%, and 90%, we are able
to reduce 25% of retraining time and get a comparable result
to [3].

IV. EXPERIMENTAL RESULTS

For our experiments, we use python 3.10 as the program-
ming language. All experiments were conducted on Windows
10, with Intel i5-13600 CPU, Nvidia RTX4090 GPU, and
64GB RAM. We use the following networks in our exper-
iments: ResNet-56 [10], ResNet-110 [10] , VGG-16 [24],
and R(2+1)D-18 [27]. The training configurations of these
networks are listed in TABLE III. All experiments are run
for three times, and the accuracy is reported as “mean±std”.

A. ResNets on CIFAR-10

For ResNets [10], we choose two structures for our ex-
periments: ResNet-56 and ResNet-110, and use CIFAR-10 as

our dataset. We used the train code of [13], and adopted the
hyperparameters from [15] to train our initial network.

We use global MWP [8] to prune all convolution layers,
and the small fully-connected layer at the end of the network
remains unpruned [18]. We set our target sparsity as 90%,
which is difficult for CLR to recover the accuracy with one-
shot pruning, that means iterative pruning is the only option
here.

To retrain the network, we use the 1-cycle CLR [15], [26].
We take 3 warmup epochs to reach the largest learning rate
used in the original training schedule. For the rest of the
retraining epochs, we use cosine function to decrease the
learning rate.

As the results shown in TABLE IV, we provide the 3-
iteration pruning for both ResNet-56 and ResNet-110 due
to their small network sizes, which made both networks
very sensitive at a high sparsity. For ResNet-56, we set our
resilient point at 70% sparsity; for ResNet-110, we set 60%
sparsity as a better resilient point.

Our results for ResNet-56 is comparable to [3]; but the
results of ResNet-110 is better than [3]. Since networks with
fewer parameters are harder to retrain, the reduction of time
is only 25% as compared to [3].

B. VGG-16 on CIFAR-10
For VGG-16 [24], we also set CIFAR-10 as the dataset, and

adopt the training configurations from [5] to train our initial
network. We set the initial learning rate as 0.05, and we divide
it by 2 for every 30 epochs. The training process lasts for 300
epochs.

Since VGG-16 has 3 large fully-connected layers, we apply
global MWP [8] to prune all layers. We set the target sparsity

- 198 -

TABLE IV: Results of iterative pruning with [3] comparing to our method when setting a high sparsity for ResNet-56, ResNet-
110, VGG-16 on CIFAR-10. We prune all the networks with MWP [8] globally, and retrained with CLR after each pruning
iteration.

Network Acc Ori.(%) Param↓(%) Method Accuracy(%) Epochs/Iter Total Epochs CPU(s) Time↓(%)

ResNet-56 93.22 90
[3] 93.31 ± 0.09 40 200 4046 0

Ours 93.30 ± 0.18 50 150 3030 25.11

ResNet-110 93.50 90
[3] 93.57 ± 0.24 40 200 5561 0

Ours 93.66 ± 0.08 50 150 4155 25.28

VGG-16 92.50 96
[3] 92.56 ± 0.12 40 200 3036 0

Ours 92.58 ± 0.20 40 80 1240 59.16

TABLE V: We apply the same experimental settings in TABLE IV for ResNet-56 and ResNet-110 on CIFAR-100.

Network Acc Ori.(%) Param↓(%) Method Accuracy(%) Epochs/Iter Total Epochs Epochs↓(%)

ResNet-56 69.66 90
[3] 66.65 ± 0.08 40 200 0

Ours 66.64 ± 0.16 50 150 25

ResNet-110 71.49 90
[3] 68.73 ± 0.31 40 200 0

Ours 68.79 ± 0.12 50 150 25

TABLE VI: Results of iterative pruning with [3] comparing to our method when setting 90% sparsity for R(2+1)D-18 on
EgoGesture-10cls and full EgoGesture (83cls) dataset.

Dataset Acc Ori.(%) Param↓(%) Method Accuracy(%) Epochs/Iter Total Epochs CPU(s) Time↓(%)

EgoGesture-10cls 96.85 90
[3] 96.68 ± 0.72 20 100 4518 0

Ours 96.85 ± 0.33 20 40 1809 59.96

EgoGesture-83cls 91.76 90
[3] 89.41 ± 0.45 20 100 50202 0

Ours 89.49 ± 0.45 30 60 30753 38.74

as 96% due to its high tolerance to network pruning. 96%
sparsity is also a target that (one-shot MWP + CLR) cannot
recover the network’s accuracy.

For retraining, we modified our initial learning rate to 0.01.
It has a better retraining performance compared to the initial
learning rate 0.05 that we used in the initial network training
schedule. 3 warmup epochs and the cosine decay function for
the rest of the retraining is the same experimental settings as
for ResNets.

As shown in TABLE IV, we provide the 2-iteration pruning
for VGG-16. We set our resilient point at 90%, and move on
to 96% for the next iteration. Compared to [3], which spends
5 iterations to reach 96% sparsity, we only need 2 iterations
and save 59% CPU time with a slightly better accuracy.

C. ResNets on CIFAR-100

We conduct our experiments for ResNets on CIFAR-
100[14], a dataset with more classes, to showcase a situation
that is hard to preserve the network accuracy. We use the same
experimental settings as for ResNets on CIFAR-10.

As shown in TABLE V, we cannot achieve accuracy no drop
with either iterative pruning methods when aiming for a 90%
network sparsity. However, the results are very similar to the
experiments for ResNets shown in TABLE IV. We also get
a comparable accuracy for ResNet-56, and a slightly better

accuracy for ResNet-110 when compared to [3], with about
75% runtime.

D. R(2+1)D-18 on EgoGesture

We selected R(2+1)D-18 [27] for our experiment. We would
like to show the performance of the network pruning and
retraining techniques when applying on a very different dataset
and network structure.

We adopted the pre-trained parameters of R(2+1)D-18 from
[22] and continued to train with our learning rate schedule
and the selected datasets. We select EgoGesture [1], [29] as
our dataset. EgoGesture contains 83 kinds of static or dynamic
hand gesture video clips. We also picked 10 classes of gestures
to form an “EgoGesture-10cls” dataset, in order to simulate a
10-classification dataset like CIFAR-10. To be more specific,
we picked hand gestures that are labeled as number 1, 2, 3, 4,
5, 6, 12, 13, 14, and 15, which are all dynamic hand gestures.

We set CosineAnnealingWarmRestarts [19] as our learning
rate scheduler, where it decreases the learning rate from 0.01
to 0 in 10 epochs, and restarts at the initial learning rate again.
We use 50 epochs to train the R(2+1)D-18 network on the both
EgoGesture-10cls and full EgoGesture dataset.

Similar to ResNets, we also exclude R(2+1)D-18’s fully-
connected layer when performing global MWP [8]. When

- 199 -

retraining the pruned network, we do not apply any warmups
since it has a rather small initial learning rate.

The experimental results for R(2+1)D-18 on EgoGesture-
10cls dataset are shown in TABLE VI. We set our resilient
point at 80% and perform 2-iteration pruning. We are man-
aged to use almost 40% time to achieve accuracy no drop
while [3] failed to do so.

The experimental results for R(2+1)D-18 on EgoGesture
full dataset are also shown in TABLE VI. We observed the
same phenomenon as shown in the CIFAR-100 experiment -
accuracy is hard to preserve for datasets that contain more
classes. By adding 10 extra retraining epochs for each itera-
tion, we get a slightly better result than [3] with almost 61%
runtime.

V. CONCLUSION

In this work, we propose an efficient approach to network
pruning with comparable network accuracy. We use a large
network pruning portion in the first pruning iteration to lower
the runtime of iterative pruning process. Furthermore, our
results on accuracy are able to match the state-of-the-art
iterative pruning method on various network structures and
datasets with less runtime.

REFERENCES

[1] C. Cao, Y. Zhang, Y. Wu, H. Lu, and J. Cheng, “Egocentric
gesture recognition using recurrent 3d convolutional neural
networks with spatiotemporal transformer modules,” in Proc.
of the IEEE International Conference on Computer Vision,
2017, pp. 3763–3771.

[2] M. A. Carreira-Perpinán and Y. Idelbayev, ““Learning-
compression” algorithms for neural net pruning,” in Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8532–8541.

[3] J. Frankle and M. Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” in Proc. of the
International Conference on Learning Representations, 2019.

[4] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin, “Linear
mode connectivity and the lottery ticket hypothesis,” in Proc.
of the International Conference on Machine Learning, 2020,
pp. 3259–3269.

[5] C.-Y. Fu, PyTorch-VGG-CIFAR10, https : / / github . com /
chengyangfu/pytorch-vgg-cifar10, Accessed: 2023-06-23.

[6] K. Ghodasara, “Overview of decision tree pruning in machine
learning,” International Research Journal of Engineering and
Technology, vol. 8, no. 8, pp. 2073–2076, 2021.

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural network with pruning, trained quan-
tization and huffman coding,” in Proc. of the International
Conference on Learning Representations, 2016.

[8] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” Advances in
Neural Information Processing Systems, vol. 28, 2015.

[9] B. Hassibi and D. Stork, “Second order derivatives for net-
work pruning: Optimal brain surgeon,” Advances in Neural
Information Processing Systems, vol. 5, 1992.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[11] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter
pruning for accelerating deep convolutional neural networks,”
in Proc. of the International Joint Conference on Artificial
Intelligence, 2018, pp. 2234–2240.

[12] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning
via geometric median for deep convolutional neural networks
acceleration,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4340–4349.

[13] Y. Idelbayev, Proper ResNet implementation for CI-
FAR10/CIFAR100 in PyTorch, https://github.com/akamaster/
pytorch resnet cifar10, Accessed: 2023-05-14.

[14] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” University of Toronto, Tech. Rep.,
2009.

[15] D. H. Le and B. Hua, “Network pruning that matters: A case
study on retraining variants,” in Proc. of the International
Conference on Learning Representations, 2021.

[16] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,”
Advances in Neural Information Processing Systems, vol. 2,
1989.

[17] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning filters for efficient convnets,” in Proc. of the Inter-
national Conference on Learning Representations, 2017.

[18] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethink-
ing the value of network pruning,” in Proc. of the International
Conference on Learning Representations, 2019.

[19] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient
descent with warm restarts,” in Proc. of the International
Conference on Learning Representations, 2017.

[20] M. C. Mozer and P. Smolensky, “Skeletonization: A technique
for trimming the fat from a network via relevance assessment,”
Advances in Neural Information Processing Systems, vol. 1,
1988.

[21] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N.
Srebro, “The role of over-parametrization in generalization
of neural networks,” in Proc. of the International Conference
on Learning Representations, 2019.

[22] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative
style, high-performance deep learning library,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[23] A. Renda, J. Frankle, and M. Carbin, “Comparing rewinding
and fine-tuning in neural network pruning,” in Proc. of the
International Conference on Learning Representations, 2020.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. of the
International Conference on Learning Representations, 2015.

[25] L. N. Smith, “Cyclical learning rates for training neural
networks,” in IEEE Winter Conference on Applications of
Computer Vision, 2017, pp. 464–472.

[26] L. N. Smith and N. Topin, “Super-convergence: Very fast
training of neural networks using large learning rates,” in Proc.
of Artificial Intelligence and Machine Learning for Multi-
Domain Operations Applications, SPIE, vol. 11006, 2019,
pp. 369–386.

[27] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and
M. Paluri, “A closer look at spatiotemporal convolutions for
action recognition,” in Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 6450–6459.

[28] R. Yu, A. Li, C.-F. Chen, et al., “Nisp: Pruning networks using
neuron importance score propagation,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition,
2018, pp. 9194–9203.

[29] Y. Zhang, C. Cao, J. Cheng, and H. Lu, “Egogesture: A new
dataset and benchmark for egocentric hand gesture recog-
nition,” IEEE Transactions on Multimedia, vol. 20, no. 5,
pp. 1038–1050, 2018.

- 200 -

