
Squaremax: A Hardware-Friendly Replacement for Softmax and
Its Efficient VLSI Design and Implementation

Meng-Hsun Hsieh, Xuan-Hong Li, Yu-Hsiang Huang, Pei-Hsuan Kuo, and Juinn-Dar Huang
Department of Electronics and Electrical Engineering & Institute of Electronics

National Yang Ming Chiao Tung University, Hsinchu, Taiwan
{mhhsieh.ee11, alanlee.ee09, ethan0707.ee10, psh09018.ee10, jdhuang}@nycu.edu.tw

Abstract— The Softmax function holds an essential role in
most machine learning algorithms. Conventional realization of
Softmax necessitates computationally intensive exponential
operations and divisions, thereby posing formidable challenges
in developing low-cost hardware implementations. This paper
presents a promising hardware-friendly alternative, Squaremax,
which gets rid of complex exponential operations. The function
definition is extremely simple and can thus be efficiently
implemented in both software and hardware. Experimental
results show that Squaremax consistently attains comparable or
superior accuracy over several popular models. Besides, this
paper also proposes an efficient hardware architecture design of
Squaremax. It requires no functional units for exponential and
logarithmic operations, and is even lookup table (LUT) free. It
adopts a flexible 16-bit fixed-point Q format for I/O to better
preserve the output precision, which leads to higher model
accuracy. Moreover, it yields substantial improvements in speed,
area, and power, as well as achieves remarkable area and power
efficiency of 664 G/mm2 and 1396 G/W in a 40nm process.
Therefore, hardware-friendly Squaremax is a very promising
alternative to complex Softmax in both software and hardware
for deep learning applications, and the proposed hardware
architecture design and efficient LUT-free implementation do
achieve a notable improvement in speed, area, and power.

Keywords—hardware-friendly activation function design,
Softmax, efficient VLSI implementation.

I. INTRODUCTION AND PREVIOUS WORK
Activation functions serve as fundamental building blocks

within neural networks, enabling them to transform raw input
data into meaningful and actionable insights. Among these
crucial functions, the Softmax activation function stands out
as a linchpin in the realm of deep learning.

Softmax plays a pivotal role in converting raw neural
network outputs into a probability distribution. This process is
essential for multiclass classification problems, where models
must assign probabilities to various classes. By exponentiating
and normalizing the input values, Softmax produces a
probability distribution that reflects the likelihood of each
class. It is the transformation that allows neural networks to
make informed decisions and generate accurate predictions.

Therefore, Softmax is extensively adopted across a
multitude of domains, including computer vision [1], natural
language processing (NLP) [2]–[3], and beyond, underscoring
its versatile applicability across a wide range of tasks. Despite
its ubiquity and indispensable role, Softmax also presents a
significant computational complexity, especially within the
context of hardware design. The intricate mathematical
operations involved, including exponentiation and division,
which demands innovative strategies to achieve efficient
hardware implementations. Consequently, several previous
approaches have emerged to tackle the challenges posed by
the hardware realization of Softmax.

The most straightforward and also widely adopted method
for implementing a computationally intensive exponential
operation within the Softmax function is through the use of a
lookup table (LUT) [4]–[6]. In this method, precomputed
exponential values for a range of possible input values are
stored in a RAM-based table. When performing Softmax with
a given input, the input value is considered an index to retrieve
the corresponding output exponential value from the table.
The method eliminates the need of computationally expensive
exponential calculations, resulting in notable computation
efficiency improvement. Nevertheless, it is worth noting that
this method demands substantial memory resources as the
lookup table, and the output accuracy is highly dependent on
the input bit-width m (table height: 2m) and the output bit-
width n (table width: n); that is, the higher the output precision
is desired, the larger the lookup table is demanded. Moreover,
if the input value cannot be limited within a small range, it is
extremely hard to preserve the output precision since the range
of output values stored in the table gets wider exponentially.

Alternatively, mathematical transformations are applied to
the exponential function in some studies. Using the Log-Sum-
Exp trick, as adopted in [7]–[11], this technique involves
taking the logarithm of the sum of exponentials and then
exponentiating the result. It ensures numerical stability even
when dealing with an unbounded input range. Nevertheless,
this method requires additional operations such as logarithm
computations, which inevitably leads to a larger and slower
implementation. Hence, a base-2 alternative to the exponential
function is employed in [12]–[14], where the exponential ex is
substituted by 2x. Though this approach is favored for its
computation efficiency, most of studies only demonstrated its
use in CNN-based models, where merely single Softmax layer
is used. It is unclear if it is still effective in a Transformer-
based model, which includes dozens of Softmax layers.

In addition to previously mentioned methods, in [15] the
exponential computation is replaced by Maclaurin series and
division is replaced with shift by rounding the divisor to the
nearest power-of-two. It achieves a notable area reduction at
the cost of relatively large precision loss. It is worth
mentioning that most previous studies on the implementation
of complex Softmax function focused on approximating or
substituting exponential computation and eliminating division
in order to reduce hardware complexity.

In this paper, we present a new hardware-friendly function,
Squaremax, as an alternative to Softmax. Its simple definition
includes no exponential operations, which thus guarantees that
hardware implementations can easily be efficient. In addition,
no approximations are required since hardware implements
exactly the same definition as software does. According to our
experiments, Squaremax can achieve comparable or even
higher accuracy in several well-known Transformer-based
models including a dozen of Softmax layers inside.

SASIMI 2024 ProceedingsR3-7

- 201 -

The rest of this paper is organized as follows. Section II
introduces the proposed function, Squaremax. Section III
presents the details of hardware design and implementation.
The experimental results and comparisons in terms of model
accuracy and hardware performance are given in Section IV.
Finally, the concluding remarks are given in Section V.

II. FUNCTION DEFINITION OF SQUAREMAX

A. Original Softmax Function
The definition of Softmax function is shown below:

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

 (1)

For a given input vector x = [x1, x2, …, xn], the Softmax
function produces an output vector y = [y1, y2, …, yn], where yi
= Softmax(xi). Softmax can be divided into two major steps.
First, the Softmax function calculates the exponential value of
each element xi in the input vector. This is to amplify the
differences between two positive elements; i.e., large positive
values become even larger after exponentiation. Next, each
individual exponential value of xi in the input vector is divided
by the sum of all exponential values. This step ensures that
each output value yi is less than 1 and the sum of all output
values exactly equals 1, which makes the output vector y
represent a probability distribution. That is, Softmax utilizes
the exponential function for nonlinear weighting to intensely
enlarge the difference between two positive input values. The
key properties of Softmax can be further summarized below:

1. Do nonlinear weighting through the exponential function.
2. Summation of all values in the output vector is equal to 1.
3. Every output value yi is always positive.
4. Weighting function is a strictly increasing function.
5. Weighting function is differentiable.

It is a great challenge to implement the Softmax function
exactly in hardware: both exponential and division operations
are computationally expensive, which inevitably leads to a
large and slow implementation. As a result, an alternative that
can be easily and efficiently implemented in both software and
hardware without the need of approximation is desired.

B. Proposed Squaremax Function
To make the alternative simple, let us think outside the box:

how about replacing the expensive exponential function with
another weighting function that can be easily implemented in
both software and hardware? Our solution is thus given in (2):

 𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖)𝑝𝑝

∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑗𝑗)𝑝𝑝𝑁𝑁
𝑗𝑗=1

 (2)

Moreover, we propose the Squaremax function, which is
defined in (2) as p is set to 2. ReLU is used to clamp negative
inputs to zero, preventing the function curve from bending
upwards or downwards when xi is negative. Similarly, the key
properties of Squaremax can be summarized as follows:

1. Do nonlinear weighting through a polynomial function.
2. Summation of all values in the output vector is equal to 1.
3. Every output value yi is always nonnegative.
4. Weighting function is a strictly nondecreasing function.
5. Weighting function is differentiable except for input x = 0.

It should be crystal clear that Softmax and Squaremax hold
the same or very similar key properties, whereas Squaremax
is much easier in both software and hardware implementations.

C. Division-to-Multiplication Conversion
Since the division is also expensive in hardware, it is also

crucial to eliminate its use. Hence, we propose a division-to-
multiplication conversion process, given in (3), which only
requires multiplication and shift operations:

 𝑥𝑥
𝐷𝐷

= 𝑥𝑥
𝑚𝑚×2𝑛𝑛

= 𝑥𝑥 × 1
𝑚𝑚

× 1
2𝑛𝑛

 (3)

In (3), the denominator D is further expressed as 𝑚𝑚 × 2𝑛𝑛 ,
where 1 ≤ m < 2. First, multiplying by 2−𝑛𝑛 can be easily done
by a shift operation. Next, m is approximated as 1.abc, where
abc are the most significant three bits next to the binary point,
as shown in (4). Since m only has 8 possible values after
approximation, merely an extremely low-cost 8-entry decoder
with a 3-bit input (i.e., abc) is required to generate the
reciprocals of those 8 possible values of m, as shown in (5).
We will show later that considering only most significant 3
bits (i.e., abc) is enough to achieve a high model accuracy.

 𝐷𝐷 = 𝑚𝑚 × 2𝑛𝑛 ≈ 1. 𝑎𝑎𝑎𝑎𝑎𝑎 × 2𝑛𝑛 (4)

 𝑥𝑥
𝐷𝐷

= 𝑥𝑥
𝑚𝑚×2𝑛𝑛

≈ 𝑥𝑥 × 1
1.𝑎𝑎𝑎𝑎𝑎𝑎

× 1
2𝑛𝑛

 (5)

Hence, the proposed division-to-multiplication conversion
process requires neither an expensive divider nor a LUT-based
reciprocal unit. It simply demands a multiplier, a decoder, and
a shifter, which leads to a very efficient implementation.
Moreover, there will be no approximation errors between
software model and hardware implementation if both of them
comply with the proposed conversion process.

III. HARDWARE ARCHITECTURE AND IMPLEMENTATION
The proposed implementation adopts the 16-bit fixed-

point Q number format, where the exact input and output
formats are set to Q16.0 and Q1.15, respectively.

A. Algorithm
The overall computation flow of the proposed Squaremax

function is detailed in Algorithm 1. N is the length of the
given input/output vector, and can be up to 8192 in the
proposed hardware implementation.

Algorithm 1: Squaremax Function

Input: 𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥(𝑁𝑁)
Output: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(2), … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁)

1 𝑎𝑎𝑎𝑎𝑎𝑎 ← 0
2 for 𝑖𝑖 ← 1 to 𝑁𝑁 do // Step 1
3 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥(𝑖𝑖)) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥(𝑖𝑖))
4 𝑎𝑎𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖)
5 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) ← 𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖))
6 end
7 𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ← 𝐿𝐿𝐿𝐿𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎)
8 for 𝑖𝑖 ← 1 to 𝑁𝑁 do // Step 2
9 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖) ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖)
10 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) ← 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)
11 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖) ← 𝑅𝑅_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖), 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖))
12 end

- 202 -

In Step 1, ReLU is first applied to each input xi and the
outcome is further squared for each input xi (Line 3). Note that
(ReLU(x))2 is a strictly nondecreasing function. Next, adding
up (ReLU(xi))2 into 40-bit acc to get the denominator D in (2)
(Line 4). A 15-bit unsigned multiplier is used for the square
operation because the output of ReLU is always nonnegative.
The output of a 15-bit multiplier, Mult(i), is 30-bit wide.
Nevertheless, the squared value is used as the multiplier input
in Step 2, which limits the maximum bit-width to 15. To
minimize the precision loss in this 30-bit to 15-bit conversion,
a dynamic scaling approach is developed. A leading one
detector (LOD) is used to determine 30-bit Mult(i) should be
right-shifted by s = dynamic_shift(i) bits, where 0 ≤ s ≤ 15.
Then, right-shift Mult(i) by s bits and take the rightmost 15-
bit result as RSQR(i) (Line 5). Similarly, an LOD can be used
to find out the values of abc and n in (4) (Line 7). At last, the
reciprocal of m in (5), 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 , can be generated via a decoder.

In Step 2, RSQR(i) is first multiplied by 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 to get the
fraction part (Line 9), which needs to be further right-shifted
to get the final Squaremax(i) in Q1.15 format. The correct
right-shift amount, Shift(i), is equal to the difference between
static_shift and dynamic_shift(i) (Line 10). Finally, a proper
right shift is applied to get every Squaremax(i) (Line 11).

B. Hardware Architecture
We also propose a hardware architecture design, shown in

Fig. 1, which can realize the algorithm previously mentioned
in Section III-A. The proposed design can process 8 input
elements simultaneously to boost the design throughput. Since
it is a 2-step algorithm, those blue lines in Fig. 1 indicate data
flows in Step 1, while red ones indicate data flows in Step 2.

In Step 1, a 16-bit signed input x is fed into a ReLU unit.
The ReLU output is determined by the sign bit of x; however,
the result is always a 15-bit unsigned value. After squaring
ReLU(xi) via a 15-bit multiplier, an LOD is used to process
30-bit multiplication output and then produces 15-bit RSQR(i)
and its associated 4-bit dynamic_shift(i). A 40-bit accumulator
is used to sum up all (ReLU(xi))2, and the succeeding LOD
and the decoder are in charge of producing the values of 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
and static_shift required in Step 2 later. Note that the input
vector length N can be up to 8192, which is large enough to
support recent large language models such as GPT-4-8k [16].

In Step 2, the same 15-bit multiplier is used to multiply
RSQR(i) and 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 , which significantly reduces the area cost
via resource sharing. Then, the right-shift amount is calculated
by subtracting dynamic_shift(i) from static_shift. At the end,
a shifter is utilized to get the Squaremax(i) in Q1.15 format.

IV. EXPERIMENTAL RESULTS AND COMPARISONS
This section includes a set of experiment results, analyses,

discussions, and comparisons between our work and previous
studies. The first half focuses on the model accuracy, while
the second half discusses the hardware performance.

A. Model Accuracy
To verify whether Squaremax is a good replacement to

Softmax, two famous Transformer models, DeiT [17] from
Meta (Facebook) and Swin [18] from Microsoft, are selected
for performance evaluation since they both include rich
Softmax layers inside. All experiments have been conducted
in the PyTorch framework. The model accuracy is evaluated
using the well-known ImageNet-1K dataset.

TABLE I reports the Top-1 accuracy of DeiT-Tiny using
the original Softmax and the proposed polynomial-based
functions in (2) with p = 1~4 after 32-epoch post-training. It
is evident that the proposed polynomial functions achieve the
same level of accuracy as compared with original Softmax.
Among these four versions, the cubic one achieves the highest
model accuracy. Nevertheless, the cubic version (p = 3)
requires more multiplications in hardware implementation,
which either increases the area cost or reduces the throughput.
In contrast, the square version (p = 2) merely requires one
multiplication, and its accuracy is virtually the same as that of
the cubic one. On the other hand, the accuracy of the linear
version (p = 1) is significantly lower though it demands no
multiplication. In our opinion, the square version achieves the
best balance between hardware cost and model accuracy.
Therefore, we name the square version “Squaremax” and
select it as an alternative to original Softmax.

TABLE II presents the model accuracy over a set of
Squaremax variants. First, two baseline models, DeiT-Tiny
and Swin-Tiny, originally adopting Softmax are initially
trained for 300 epochs. Next, we replace all Softmax layers
with Squaremax ones in DeiT-Tiny and Swin-Tiny, and train
the modified models from scratch for 300 epochs as well. The
results in TABLE II clearly show that Squaremax outperforms
Softmax: the model accuracy is raised by 1.12% and 0.01% in
DeiT-Tiny and Swin-Tiny, respectively. Note that both
models consist of 12 Transformer layers; that is, the above
comparisons are not made just at the last layer in most CNN
models, which most previous studies did. Hence, it is evident
that Squaremax is indeed a promising alternative to Softmax.

In the proposed hardware implementation, the division in
Squaremax is converted to a combination of multiplication,
decoding, and shifting operations. To check the effectiveness
of the conversion, the division in Squaremax is replaced, and
the modified models are further post-trained for another 32
epochs. Moreover, a 3-bit index abc is sent to the decoder in
Section II-C. A set of experiments have been conducted to see
how the length of index (1~4 bits) affects the model accuracy.
In general, a shorter index leads to a smaller design but incurs
a larger accuracy loss potentially. The experiment results are
also listed in TABLE II. It is apparent that an index length of
3 or 4 bits is quite enough to make the conversion a success.
Hence, a 3-bit index is selected in our implementation. More
surprisingly, models incorporated with such conversion even
achieve a higher accuracy than their original counterparts.

Therefore, it is convincing that the proposed Squaremax is
a very competitive alternative against Softmax since it not
only can achieve the same level of model accuracy but also
enables extremely efficient hardware implementations.

Fig. 1. Proposed hardware architecture design for Squaremax.

- 203 -

TABLE I. Accuracy of Softmax and various weighting polynomials.

Top-1 Accuracy

DeiT-Tiny
Softmax (pretrained, 300 epochs) 74.48

Softmax (post-training) 74.96
ReLU(x) 74.11
ReLU(x)2 74.72
ReLU(x)3 74.74
ReLU(x)4 74.73

TABLE II. Comparisons between Squaremax and Softmax.

 Top-1 Accuracy

 DeiT-Tiny Swin-Tiny

Softmax (pretrained, 300 epochs) 74.48 81.15
Squaremax (train-from-scratch) 75.60 81.16
Squaremax (4-bit, post-training) 75.62 81.28
Squaremax (3-bit, post-training) 75.61 81.32
Squaremax (2-bit, post-training) 75.62 81.21
Squaremax (1-bit, post-training) 75.37 81.17

B. Hardware Implementation Results and Comparisons
The proposed Squaremax design has been implemented in

Verilog and synthesized using Synopsys Design Compiler
with a TSMC 40nm cell library. The synthesized netlist and
the signal activity log are fed into Synopsys PrimeTime-PX
for more accurate power estimation. TABLE III gives our
implementation results and comparisons against previous arts.
The I/O data format in the proposed design is 16-bit fixed-
point. Our design can process 8 inputs in parallel and can
handle an input vector of up to 8192 elements, which can be
easily extended if necessary. Its operating frequency can be up
to 1.67 GHz, which implies the peak throughput is 13.36 G/s.
The area and power consumption is 20119 𝜇𝜇𝜇𝜇2 and 9.57 mW,
which suggests that our design exhibits an area efficiency of
664.049 G/mm2 and a power efficiency of 1396.029 G/W.

To evaluate the performance of our design, three existing
designs [6], [8] and [9] are selected for comparisons. They try
to mimic the original Softmax function and use LUT-based
methods to approximate exponential or logarithmic operations.
In addition, all of them do not make extensive and aggressive
approximations, such as rounding to the nearest power-of-two
in [15] or discarding the use of the log unit in [4]. Though such
approximations can effectively lower the hardware cost, they
often result in a significant undesired accuracy loss.

From TABLE III, it is obvious that the proposed design
outperforms the previous arts virtually in all aspects. First, the
designs in [6] and [9] cannot process multiple input elements
in parallel, which leads to a notably low throughput. Next, our
design is well pipelined (e.g., two-stage multipliers are in use)
and thus owns the fastest operating frequency. It is even faster
than the design in [8] utilizing a 28nm technology. Besides,
reported area efficiency (G/mm2) and power efficiency (G/W)
of every design are normalized (i.e., scaled) with respect to a
40nm technology to make comparisons fair among different
designs. Again, the normalized area efficiency and power
efficiency of our design is 664.049 G/mm2 and 1396.029 G/W
respectively, which are the highest values in comparisons.
Moreover, the improvement in area efficiency against [6] and
[9] is 112× and 322×, respectively. It suggests that our LUT-
free design drastically boosts the area and power efficiency
and can thus outperform those LUT-based designs easily.

V. CONCLUSION
In this paper, we propose a new activation function, named

Squaremax, to be an alternative to widely-used Softmax. From
the algorithm perspective, Squaremax and Softmax share a set
of identical/similar key properties. From the implementation
perspective, Squaremax is highly hardware-friendly since it
requires no exponential operations and can thus be efficiently
implemented in both software and hardware without the need
of LUT-based approximations. In this paper, we also present
a well-crafted LUT-free hardware design and implementation.
Multiple inputs can be processed in parallel, computing
resources are shared for design size reduction, a dynamic
scaling approach is adopted for precision loss minimization,
and a division-to-multiplication conversion is utilized to
eliminate the need of divisions entirely.

Experimental results indicate that Squaremax achieves the
same or even better accuracy than Softmax in a few popular
Transformer-based models. Moreover, the proposed hardware
implementation outperforms a set of previous designs in terms
of maximum operating frequency, area efficiency, and power
efficiency. Therefore, it is conclusive that Squaremax is
indeed a competitive and promising alternative to Softmax in
both software and hardware for deep learning applications.

TABLE III. Comparisons between the proposed design and previous studies.

 [6] [8] [9] Ours

Technology 65nm 28nm 65nm 40nm
Data Width (w) 32 16 16 16
Parallelism (n) 1 8 1 8

Number of Input Elements (N) N/A N/A Up to 4096 Up to 8192
Frequency (GHz) 1.0 1.64 0.5 1.67
Latency (cycles) N/A N/A 7 6

Throughput (G/s) 1.0 13.12 0.5 13.36
Area (𝝁𝝁𝒎𝒎𝟐𝟐) 444858 15926 640000 20119

Area Efficiency (G/𝒎𝒎𝒎𝒎𝟐𝟐) 2.248 823.810 0.78125 664.049
Normalized Area Efficiency (G/𝒎𝒎𝒎𝒎𝟐𝟐) 5.936 403.667 2.063 664.049

Power (mW) 333 N/A 0.82 9.57
Power Efficiency (G/W) 3.003 N/A 609.756 1396.029

Normalized Power Efficiency (G/W) 4.880 N/A 990.854 1396.029

- 204 -

REFERENCES
[1] L. Peng, S. Zheng, P. Li, Y. Wang, and Q. Zhong, “A Comprehensive

Detection System for Track Geometry Using Fused Vision and Inertia,”
in IEEE Transactions on Instrumentation and Measurement, vol. 70,
pp. 1–15, 2021.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), 2019, pp. 4171–4186.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A.
Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S.
Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I.
Sutskever, and D. Amodei, “Language Models are Few-Shot Learners,”
in Advances in Neural Information Processing Systems (NeurIPS),
2020.

[4] I. Kouretas, and V. Paliouras, “Hardware Implementation of a
Softmax-Like Function for Deep Learning,” Technologies, vol. 8,
no. 3:46, 2020.

[5] X. Dong, X. Zhu, and D. Ma, “Hardware Implementation of Softmax
Function Based on Piecewise LUT,” in IEEE International Workshop
on Future Computing (IWOFC), 2019, pp. 1–3.

[6] Q. Sun, Z. Di, Z. Lv, F. Song, Q. Xiang, Q. Feng, Y. Fan, X. Yu,
and W. Wang, “A High Speed SoftMax VLSI Architecture Based on
Basic-Split,” in IEEE International Conference on Solid-State and
Integrated Circuit Technology (ICSICT), 2018, pp. 1–3.

[7] B. Yuan, “Efficient Hardware Architecture of Softmax Layer in Deep
Neural Network,” in IEEE International System-on-Chip Conference
(SOCC), 2016, pp. 323–326.

[8] D. Zhu, S. Lu, M. Wang, J. Lin, and Z. Wang, “Efficient Precision-
Adjustable Architecture for Softmax Function in Deep Learning, ” in
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67,
no. 12, pp. 3382–3386, 2020.

[9] G. Du, C. Tian, Z. Li, D. Zhang, Y. Yin, and Y. Ouyang, “Efficient
Softmax Hardware Architecture for Deep Neural Networks,” in Great
Lakes Symposium on VLSI (GLSVLSI), 2019, pp. 75–80.

[10] N. A. Koca, A. T. Do, and C.- H. Chang, “Hardware-efficient Softmax
Approximation for Self-Attention Networks,” in IEEE International
Symposium on Circuits and Systems (ISCAS), 2023, pp. 1–5.

[11] M. Wang, S. Lu, D. Zhu, J. Lin and Z. Wang, “A High-Speed and Low-
Complexity Architecture for Softmax Function in Deep Learning,” in
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS),
2018, pp. 223–226.

[12] Y. Zhang, Y. Zhang, L. Peng, L. Quan, S. Zheng, Z. Lu, and H. Chen,
“Base-2 Softmax Function: Suitability for Training and Efficient
Hardware Implementation,” in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 69, no. 9, pp. 3605–3618, 2022.

[13] J. R. Stevens, R. Venkatesan, S. Dai, B. Khailany, and A. Raghunathan,
“Softermax: Hardware/Software Co-Design of an Efficient Softmax
for Transformers,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC), 2021, pp. 469–474.

[14] G. C. Cardarilli, L. D. Nunzio, R. Fazzolari, D. Giardino, A. Nannarelli,
M. Re, and S. Spanò, “A pseudo-softmax function for hardware-based
high-speed image classification,” Scientific Reports, vol. 11, 2021,
art. no. 15307.

[15] F. Spagnolo, S. Perri, and P. Corsonello, “Aggressive Approximation
of the SoftMax Function for Power-Efficient Hardware
Implementations,” in IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 3, pp. 1652–1656, 2022.

[16] OpenAI, “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774,
2023.

[17] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H.
Jégou, “Training data-efficient image transformers & distillation
through attention,” in Proceedings of the 38th International
Conference on Machine Learning (ICML), 2021.

[18] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin Transformer: Hierarchical Vision Transformer Using Shifted
Windows,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 10012–10022, 2021.

- 205 -

