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Abstract— The Softmax function holds an essential role in 
most machine learning algorithms. Conventional realization of 
Softmax necessitates computationally intensive exponential 
operations and divisions, thereby posing formidable challenges 
in developing low-cost hardware implementations. This paper 
presents a promising hardware-friendly alternative, Squaremax, 
which gets rid of complex exponential operations. The function 
definition is extremely simple and can thus be efficiently 
implemented in both software and hardware. Experimental 
results show that Squaremax consistently attains comparable or 
superior accuracy over several popular models. Besides, this 
paper also proposes an efficient hardware architecture design of 
Squaremax. It requires no functional units for exponential and 
logarithmic operations, and is even lookup table (LUT) free. It 
adopts a flexible 16-bit fixed-point Q format for I/O to better 
preserve the output precision, which leads to higher model 
accuracy. Moreover, it yields substantial improvements in speed, 
area, and power, as well as achieves remarkable area and power 
efficiency of 664 G/mm2 and 1396 G/W in a 40nm process. 
Therefore, hardware-friendly Squaremax is a very promising 
alternative to complex Softmax in both software and hardware 
for deep learning applications, and the proposed hardware 
architecture design and efficient LUT-free implementation do 
achieve a notable improvement in speed, area, and power. 

Keywords—hardware-friendly activation function design, 
Softmax, efficient VLSI implementation. 

I. INTRODUCTION AND PREVIOUS WORK 
Activation functions serve as fundamental building blocks 

within neural networks, enabling them to transform raw input 
data into meaningful and actionable insights. Among these 
crucial functions, the Softmax activation function stands out 
as a linchpin in the realm of deep learning. 

Softmax plays a pivotal role in converting raw neural 
network outputs into a probability distribution. This process is 
essential for multiclass classification problems, where models 
must assign probabilities to various classes. By exponentiating 
and normalizing the input values, Softmax produces a 
probability distribution that reflects the likelihood of each 
class. It is the transformation that allows neural networks to 
make informed decisions and generate accurate predictions. 

Therefore, Softmax is extensively adopted across a 
multitude of domains, including computer vision [1], natural 
language processing (NLP) [2]–[3], and beyond, underscoring 
its versatile applicability across a wide range of tasks. Despite 
its ubiquity and indispensable role, Softmax also presents a 
significant computational complexity, especially within the 
context of hardware design. The intricate mathematical 
operations involved, including exponentiation and division, 
which demands innovative strategies to achieve efficient 
hardware implementations. Consequently, several previous 
approaches have emerged to tackle the challenges posed by 
the hardware realization of Softmax. 

The most straightforward and also widely adopted method 
for implementing a computationally intensive exponential 
operation within the Softmax function is through the use of a 
lookup table (LUT) [4]–[6]. In this method, precomputed 
exponential values for a range of possible input values are 
stored in a RAM-based table. When performing Softmax with 
a given input, the input value is considered an index to retrieve 
the corresponding output exponential value from the table. 
The method eliminates the need of computationally expensive 
exponential calculations, resulting in notable computation 
efficiency improvement. Nevertheless, it is worth noting that 
this method demands substantial memory resources as the 
lookup table, and the output accuracy is highly dependent on 
the input bit-width m (table height: 2m) and the output bit-
width n (table width: n); that is, the higher the output precision 
is desired, the larger the lookup table is demanded. Moreover, 
if the input value cannot be limited within a small range, it is 
extremely hard to preserve the output precision since the range 
of output values stored in the table gets wider exponentially. 

Alternatively, mathematical transformations are applied to 
the exponential function in some studies. Using the Log-Sum-
Exp trick, as adopted in [7]–[11], this technique involves 
taking the logarithm of the sum of exponentials and then 
exponentiating the result. It ensures numerical stability even 
when dealing with an unbounded input range. Nevertheless, 
this method requires additional operations such as logarithm 
computations, which inevitably leads to a larger and slower 
implementation. Hence, a base-2 alternative to the exponential 
function is employed in [12]–[14], where the exponential ex is 
substituted by 2x. Though this approach is favored for its 
computation efficiency, most of studies only demonstrated its 
use in CNN-based models, where merely single Softmax layer 
is used. It is unclear if it is still effective in a Transformer-
based model, which includes dozens of Softmax layers. 

In addition to previously mentioned methods, in [15] the 
exponential computation is replaced by Maclaurin series and 
division is replaced with shift by rounding the divisor to the 
nearest power-of-two. It achieves a notable area reduction at 
the cost of relatively large precision loss. It is worth 
mentioning that most previous studies on the implementation 
of complex Softmax function focused on approximating or 
substituting exponential computation and eliminating division 
in order to reduce hardware complexity. 

In this paper, we present a new hardware-friendly function, 
Squaremax, as an alternative to Softmax. Its simple definition 
includes no exponential operations, which thus guarantees that 
hardware implementations can easily be efficient. In addition, 
no approximations are required since hardware implements 
exactly the same definition as software does. According to our 
experiments, Squaremax can achieve comparable or even 
higher accuracy in several well-known Transformer-based 
models including a dozen of Softmax layers inside. 
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The rest of this paper is organized as follows. Section II 
introduces the proposed function, Squaremax. Section III 
presents the details of hardware design and implementation. 
The experimental results and comparisons in terms of model 
accuracy and hardware performance are given in Section IV. 
Finally, the concluding remarks are given in Section V. 

II. FUNCTION DEFINITION OF SQUAREMAX 

A. Original Softmax Function 
The definition of Softmax function is shown below: 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

    (1) 

For a given input vector x = [x1, x2, …, xn], the Softmax 
function produces an output vector y = [y1, y2, …, yn], where yi 
= Softmax(xi). Softmax can be divided into two major steps. 
First, the Softmax function calculates the exponential value of 
each element xi in the input vector. This is to amplify the 
differences between two positive elements; i.e., large positive 
values become even larger after exponentiation. Next, each 
individual exponential value of xi in the input vector is divided 
by the sum of all exponential values. This step ensures that 
each output value yi is less than 1 and the sum of all output 
values exactly equals 1, which makes the output vector y 
represent a probability distribution. That is, Softmax utilizes 
the exponential function for nonlinear weighting to intensely 
enlarge the difference between two positive input values. The 
key properties of Softmax can be further summarized below: 

1. Do nonlinear weighting through the exponential function. 
2. Summation of all values in the output vector is equal to 1. 
3. Every output value yi is always positive. 
4. Weighting function is a strictly increasing function. 
5. Weighting function is differentiable. 

It is a great challenge to implement the Softmax function 
exactly in hardware: both exponential and division operations 
are computationally expensive, which inevitably leads to a 
large and slow implementation. As a result, an alternative that 
can be easily and efficiently implemented in both software and 
hardware without the need of approximation is desired. 

B. Proposed Squaremax Function 
To make the alternative simple, let us think outside the box: 

how about replacing the expensive exponential function with 
another weighting function that can be easily implemented in 
both software and hardware? Our solution is thus given in (2): 

 𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖)𝑝𝑝

∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑗𝑗)𝑝𝑝𝑁𝑁
𝑗𝑗=1

 (2) 

Moreover, we propose the Squaremax function, which is 
defined in (2) as p is set to 2. ReLU is used to clamp negative 
inputs to zero, preventing the function curve from bending 
upwards or downwards when xi is negative. Similarly, the key 
properties of Squaremax can be summarized as follows: 

1. Do nonlinear weighting through a polynomial function. 
2. Summation of all values in the output vector is equal to 1. 
3. Every output value yi is always nonnegative. 
4. Weighting function is a strictly nondecreasing function. 
5. Weighting function is differentiable except for input x = 0. 

It should be crystal clear that Softmax and Squaremax hold 
the same or very similar key properties, whereas Squaremax 
is much easier in both software and hardware implementations. 

C. Division-to-Multiplication Conversion 
Since the division is also expensive in hardware, it is also 

crucial to eliminate its use. Hence, we propose a division-to-
multiplication conversion process, given in (3), which only 
requires multiplication and shift operations: 

 𝑥𝑥
𝐷𝐷

= 𝑥𝑥
𝑚𝑚×2𝑛𝑛

= 𝑥𝑥 × 1
𝑚𝑚

× 1
2𝑛𝑛

 (3) 

In (3), the denominator D is further expressed as 𝑚𝑚 × 2𝑛𝑛 , 
where 1 ≤ m < 2. First, multiplying by 2−𝑛𝑛 can be easily done 
by a shift operation. Next, m is approximated as 1.abc, where 
abc are the most significant three bits next to the binary point, 
as shown in (4). Since m only has 8 possible values after 
approximation, merely an extremely low-cost 8-entry decoder 
with a 3-bit input (i.e., abc) is required to generate the 
reciprocals of those 8 possible values of m, as shown in (5). 
We will show later that considering only most significant 3 
bits (i.e., abc) is enough to achieve a high model accuracy. 

 𝐷𝐷 = 𝑚𝑚 × 2𝑛𝑛 ≈ 1. 𝑎𝑎𝑎𝑎𝑎𝑎 × 2𝑛𝑛 (4) 

 𝑥𝑥
𝐷𝐷

= 𝑥𝑥
𝑚𝑚×2𝑛𝑛

≈ 𝑥𝑥 × 1
1.𝑎𝑎𝑎𝑎𝑎𝑎

× 1
2𝑛𝑛

 (5) 

Hence, the proposed division-to-multiplication conversion 
process requires neither an expensive divider nor a LUT-based 
reciprocal unit. It simply demands a multiplier, a decoder, and 
a shifter, which leads to a very efficient implementation. 
Moreover, there will be no approximation errors between 
software model and hardware implementation if both of them 
comply with the proposed conversion process. 

III. HARDWARE ARCHITECTURE AND IMPLEMENTATION 
The proposed implementation adopts the 16-bit fixed-

point Q number format, where the exact input and output 
formats are set to Q16.0 and Q1.15, respectively. 

A. Algorithm 
The overall computation flow of the proposed Squaremax 

function is detailed in Algorithm 1. N is the length of the 
given input/output vector, and can be up to 8192 in the 
proposed hardware implementation. 

 
Algorithm 1: Squaremax Function 

Input: 𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥(𝑁𝑁) 
Output: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(2), … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁) 

1 𝑎𝑎𝑎𝑎𝑎𝑎 ← 0 
2 for 𝑖𝑖 ← 1 to 𝑁𝑁 do    // Step 1 
3  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖) ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥(𝑖𝑖)) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥(𝑖𝑖)) 
4  𝑎𝑎𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖) 
5  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) ← 𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖)) 
6 end 
7 𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ← 𝐿𝐿𝐿𝐿𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎) 
8 for 𝑖𝑖 ← 1 to 𝑁𝑁 do    // Step 2 
9  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖) ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖) 
10  𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) ← 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) 
11  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖) ← 𝑅𝑅_𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖), 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)) 
12 end 
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In Step 1, ReLU is first applied to each input xi and the 
outcome is further squared for each input xi (Line 3). Note that 
(ReLU(x))2 is a strictly nondecreasing function. Next, adding 
up (ReLU(xi))2 into 40-bit acc to get the denominator D in (2) 
(Line 4). A 15-bit unsigned multiplier is used for the square 
operation because the output of ReLU is always nonnegative. 
The output of a 15-bit multiplier, Mult(i), is 30-bit wide. 
Nevertheless, the squared value is used as the multiplier input 
in Step 2, which limits the maximum bit-width to 15. To 
minimize the precision loss in this 30-bit to 15-bit conversion, 
a dynamic scaling approach is developed. A leading one 
detector (LOD) is used to determine 30-bit Mult(i) should be 
right-shifted by s = dynamic_shift(i) bits, where 0 ≤ s ≤ 15. 
Then, right-shift Mult(i) by s bits and take the rightmost 15-
bit result as RSQR(i) (Line 5). Similarly, an LOD can be used 
to find out the values of abc and n in (4) (Line 7). At last, the 
reciprocal of m in (5), 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 , can be generated via a decoder. 

In Step 2, RSQR(i) is first multiplied by 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎  to get the 
fraction part (Line 9), which needs to be further right-shifted 
to get the final Squaremax(i) in Q1.15 format. The correct 
right-shift amount, Shift(i), is equal to the difference between 
static_shift and dynamic_shift(i) (Line 10). Finally, a proper 
right shift is applied to get every Squaremax(i) (Line 11). 

B. Hardware Architecture 
We also propose a hardware architecture design, shown in 

Fig. 1, which can realize the algorithm previously mentioned 
in Section III-A. The proposed design can process 8 input 
elements simultaneously to boost the design throughput. Since 
it is a 2-step algorithm, those blue lines in Fig. 1 indicate data 
flows in Step 1, while red ones indicate data flows in Step 2. 

In Step 1, a 16-bit signed input x is fed into a ReLU unit. 
The ReLU output is determined by the sign bit of x; however, 
the result is always a 15-bit unsigned value. After squaring 
ReLU(xi) via a 15-bit multiplier, an LOD is used to process 
30-bit multiplication output and then produces 15-bit RSQR(i) 
and its associated 4-bit dynamic_shift(i). A 40-bit accumulator 
is used to sum up all (ReLU(xi))2, and the succeeding LOD 
and the decoder are in charge of producing the values of 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎  
and static_shift required in Step 2 later. Note that the input 
vector length N can be up to 8192, which is large enough to 
support recent large language models such as GPT-4-8k [16]. 

In Step 2, the same 15-bit multiplier is used to multiply 
RSQR(i) and 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 , which significantly reduces the area cost 
via resource sharing. Then, the right-shift amount is calculated 
by subtracting dynamic_shift(i) from static_shift. At the end, 
a shifter is utilized to get the Squaremax(i) in Q1.15 format. 

IV. EXPERIMENTAL RESULTS AND COMPARISONS 
This section includes a set of experiment results, analyses, 

discussions, and comparisons between our work and previous 
studies. The first half focuses on the model accuracy, while 
the second half discusses the hardware performance. 

A. Model Accuracy 
To verify whether Squaremax is a good replacement to 

Softmax, two famous Transformer models, DeiT [17] from 
Meta (Facebook) and Swin [18] from Microsoft, are selected 
for performance evaluation since they both include rich 
Softmax layers inside. All experiments have been conducted 
in the PyTorch framework. The model accuracy is evaluated 
using the well-known ImageNet-1K dataset. 

TABLE I reports the Top-1 accuracy of DeiT-Tiny using 
the original Softmax and the proposed polynomial-based 
functions in (2) with p = 1~4 after 32-epoch post-training. It 
is evident that the proposed polynomial functions achieve the 
same level of accuracy as compared with original Softmax. 
Among these four versions, the cubic one achieves the highest 
model accuracy. Nevertheless, the cubic version (p = 3) 
requires more multiplications in hardware implementation, 
which either increases the area cost or reduces the throughput. 
In contrast, the square version (p = 2) merely requires one 
multiplication, and its accuracy is virtually the same as that of 
the cubic one. On the other hand, the accuracy of the linear 
version (p = 1) is significantly lower though it demands no 
multiplication. In our opinion, the square version achieves the 
best balance between hardware cost and model accuracy. 
Therefore, we name the square version “Squaremax” and 
select it as an alternative to original Softmax. 

TABLE II presents the model accuracy over a set of 
Squaremax variants. First, two baseline models, DeiT-Tiny 
and Swin-Tiny, originally adopting Softmax are initially 
trained for 300 epochs. Next, we replace all Softmax layers 
with Squaremax ones in DeiT-Tiny and Swin-Tiny, and train 
the modified models from scratch for 300 epochs as well. The 
results in TABLE II clearly show that Squaremax outperforms 
Softmax: the model accuracy is raised by 1.12% and 0.01% in 
DeiT-Tiny and Swin-Tiny, respectively. Note that both 
models consist of 12 Transformer layers; that is, the above 
comparisons are not made just at the last layer in most CNN 
models, which most previous studies did. Hence, it is evident 
that Squaremax is indeed a promising alternative to Softmax.  

In the proposed hardware implementation, the division in 
Squaremax is converted to a combination of multiplication, 
decoding, and shifting operations. To check the effectiveness 
of the conversion, the division in Squaremax is replaced, and 
the modified models are further post-trained for another 32 
epochs. Moreover, a 3-bit index abc is sent to the decoder in 
Section II-C. A set of experiments have been conducted to see 
how the length of index (1~4 bits) affects the model accuracy. 
In general, a shorter index leads to a smaller design but incurs 
a larger accuracy loss potentially. The experiment results are 
also listed in TABLE II. It is apparent that an index length of 
3 or 4 bits is quite enough to make the conversion a success. 
Hence, a 3-bit index is selected in our implementation. More 
surprisingly, models incorporated with such conversion even 
achieve a higher accuracy than their original counterparts. 

Therefore, it is convincing that the proposed Squaremax is 
a very competitive alternative against Softmax since it not 
only can achieve the same level of model accuracy but also 
enables extremely efficient hardware implementations. 

 
Fig. 1. Proposed hardware architecture design for Squaremax. 
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TABLE I. Accuracy of Softmax and various weighting polynomials. 

 
Top-1 Accuracy 

DeiT-Tiny 
Softmax (pretrained, 300 epochs) 74.48 

Softmax (post-training) 74.96 
ReLU(x) 74.11 
ReLU(x)2 74.72 
ReLU(x)3 74.74 
ReLU(x)4 74.73 

TABLE II. Comparisons between Squaremax and Softmax. 

 Top-1 Accuracy 

 DeiT-Tiny Swin-Tiny 

Softmax (pretrained, 300 epochs) 74.48 81.15 
Squaremax (train-from-scratch) 75.60 81.16 
Squaremax (4-bit, post-training) 75.62 81.28 
Squaremax (3-bit, post-training) 75.61 81.32 
Squaremax (2-bit, post-training) 75.62 81.21 
Squaremax (1-bit, post-training) 75.37 81.17 

B. Hardware Implementation Results and Comparisons 
The proposed Squaremax design has been implemented in 

Verilog and synthesized using Synopsys Design Compiler 
with a TSMC 40nm cell library. The synthesized netlist and 
the signal activity log are fed into Synopsys PrimeTime-PX 
for more accurate power estimation. TABLE III gives our 
implementation results and comparisons against previous arts. 
The I/O data format in the proposed design is 16-bit fixed-
point. Our design can process 8 inputs in parallel and can 
handle an input vector of up to 8192 elements, which can be 
easily extended if necessary. Its operating frequency can be up 
to 1.67 GHz, which implies the peak throughput is 13.36 G/s. 
The area and power consumption is 20119 𝜇𝜇𝜇𝜇2 and 9.57 mW, 
which suggests that our design exhibits an area efficiency of 
664.049 G/mm2 and a power efficiency of 1396.029 G/W. 

To evaluate the performance of our design, three existing 
designs [6], [8] and [9] are selected for comparisons. They try 
to mimic the original Softmax function and use LUT-based 
methods to approximate exponential or logarithmic operations. 
In addition, all of them do not make extensive and aggressive 
approximations, such as rounding to the nearest power-of-two 
in [15] or discarding the use of the log unit in [4]. Though such 
approximations can effectively lower the hardware cost, they 
often result in a significant undesired accuracy loss. 

From TABLE III, it is obvious that the proposed design 
outperforms the previous arts virtually in all aspects. First, the 
designs in [6] and [9] cannot process multiple input elements 
in parallel, which leads to a notably low throughput. Next, our 
design is well pipelined (e.g., two-stage multipliers are in use) 
and thus owns the fastest operating frequency. It is even faster 
than the design in [8] utilizing a 28nm technology. Besides, 
reported area efficiency (G/mm2) and power efficiency (G/W) 
of every design are normalized (i.e., scaled) with respect to a 
40nm technology to make comparisons fair among different 
designs. Again, the normalized area efficiency and power 
efficiency of our design is 664.049 G/mm2 and 1396.029 G/W 
respectively, which are the highest values in comparisons. 
Moreover, the improvement in area efficiency against [6] and 
[9] is 112× and 322×, respectively. It suggests that our LUT-
free design drastically boosts the area and power efficiency 
and can thus outperform those LUT-based designs easily. 

V. CONCLUSION 
In this paper, we propose a new activation function, named 

Squaremax, to be an alternative to widely-used Softmax. From 
the algorithm perspective, Squaremax and Softmax share a set 
of identical/similar key properties. From the implementation 
perspective, Squaremax is highly hardware-friendly since it 
requires no exponential operations and can thus be efficiently 
implemented in both software and hardware without the need 
of LUT-based approximations. In this paper, we also present 
a well-crafted LUT-free hardware design and implementation. 
Multiple inputs can be processed in parallel, computing 
resources are shared for design size reduction, a dynamic 
scaling approach is adopted for precision loss minimization, 
and a division-to-multiplication conversion is utilized to 
eliminate the need of divisions entirely. 

Experimental results indicate that Squaremax achieves the 
same or even better accuracy than Softmax in a few popular 
Transformer-based models. Moreover, the proposed hardware 
implementation outperforms a set of previous designs in terms 
of maximum operating frequency, area efficiency, and power 
efficiency. Therefore, it is conclusive that Squaremax is 
indeed a competitive and promising alternative to Softmax in 
both software and hardware for deep learning applications. 

 

 

TABLE III. Comparisons between the proposed design and previous studies. 

 [6] [8] [9] Ours 

Technology 65nm 28nm 65nm 40nm 
Data Width (w) 32 16 16 16 
Parallelism (n) 1 8 1 8 

Number of Input Elements (N) N/A N/A Up to 4096 Up to 8192 
Frequency (GHz) 1.0 1.64 0.5 1.67 
Latency (cycles) N/A N/A 7 6 

Throughput (G/s) 1.0 13.12 0.5 13.36 
Area (𝝁𝝁𝒎𝒎𝟐𝟐) 444858 15926 640000 20119 

Area Efficiency (G/𝒎𝒎𝒎𝒎𝟐𝟐) 2.248 823.810 0.78125 664.049 
Normalized Area Efficiency (G/𝒎𝒎𝒎𝒎𝟐𝟐) 5.936 403.667 2.063 664.049 

Power (mW) 333 N/A 0.82 9.57 
Power Efficiency (G/W) 3.003 N/A 609.756 1396.029 

Normalized Power Efficiency (G/W) 4.880 N/A 990.854 1396.029 
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