
Double Moduler Redundancy Design of LSI Controller for Soft Error Tolerance

Katsutoshi Otsuka Kazuhito Ito

Graduate School of Science and Engineering
Saitama University

Saitama 338-8570, Japan

Abstract— A soft error in LSI is a temporary malfunction in
which stored data or signals are flipped. Redundancy is used to
correct soft errors. Double modular redundancy performs com-
putation execution and data recording in duplicate, detects soft
errors through comparison, and corrects errors by re-executing
the computation. It is preferable in terms of LSI area and power
consumption compared to triple modular redundancy. While
many studies have been conducted on redundancy in LSI datap-
aths, there have been few reports on double modular redundancy
in LSI control units. In this paper, a double redundancy design
for LSI controllers is proposed.

I. I NTRODUCTION

When neutrons caused by cosmic rays enter a large scale in-
tegrated circuit (LSI), the signal value in the circuit is reversed
if the energy exceeds a certain threshold. This is called a soft
error [1, 2]. Due to the miniaturization and lower voltage of
semiconductor devices, the signal energy in LSIs is reduced,
and the threshold value is lowered accordingly. Furthermore,
as the number of devices increases due to larger scale circuits,
the probability of soft errors occurring in LSIs increases, and
the probability of LSI malfunctions due to soft errors is getting
higher.

Redundancy is known as a soft error countermeasure. Triple
modular redundancy (TMR) uses three systems of modules to
perform the same calculation and store data (calculation re-
sults) in triplicate, and takes majority vote [3]. Even if there is
an error in either the calculation or the data, the error can be
corrected by majority vote and subsequent calculations can be
continued correctly. However, TMR has the disadvantage that
it requires three times the circuit size and power consumption.

Double modular redundancy (DMR) detects errors by per-
forming the same calculations on two modules and comparing
the results. If the results do not match, an error has occurred,
and the error is corrected by re-executing the operation that
may contain the error, and then the subsequent operations are
continued [4, 5, 6]. Although there is a delay time required to
re-execute operations for error correction, it has the advantage
of smaller circuit size and power consumption than TMR.

Generally, a digital system is divided into a data processing
section (datapath) and a control section (controller). Since the
controller is also implemented using LSI, soft errors may occur
in the controller as well. While many studies have been con-
ducted on datapath soft error countermeasures, including TMR

M

M

M

REGs0FUs0

REGs1FUs1

REGs2FUs2

multiplexors

Fig. 1. Triple modular redundancy (TMR).

and DMR [7, 8, 9], there are few reports on controller soft error
countermeasures. In this study, we propose a countermeasure
against soft errors in the controller using DMR.

The remainder of the paper is organized as follows. The
soft-error model and redundancy for the error detection and
correction are reviewed in Sect. 2. The proposed method for
DMR controller is presented in Sect. 3. Experimental results
are presented in Sect. 4 and Sect. 5 concludes the work.

II. ERROR COLLECTION AND REGISTER USAGE INDMR

A. Error model

Based on the principle and probability of soft error occur-
rence, we assume the following model for soft errors in LSI.

• Only one soft error occurs within one LSI at a time.
• Soft errors occur uniformly regardless of whether it is a

combinational logic circuit or a flip-flop.
• The impact of soft errors is limited to one module (func-

tional unit or register).
• Once a soft error occurs, it will not occur for a sufficiently

long time in the same LSI.
• Soft errors in combinational circuits do not persist beyond

the trigger of the clock signal.

B. TMR

The datapath with triple module redundancy [3] is illustrated
in Fig. 1. The results of operations in functional units (FUs)
are selected by multiplexers (MUXs) and stored in registers
(REGs). Data is read from the REGs and selected by multi-
plexers (MUXs) to be used as input data for the FUs. FUs,
REGs, and MUXs are tripled, and a tripled majority voter (M)
is inserted between the REGs output and the input MUXs of
the FUs. An error in FUs, REGs, or MUXs causes one of the
REGs to have an incorrect value. However, errors are corrected
by selecting non-error values by M and providing them to the
FUs.

SASIMI 2024 ProceedingsR1-4

- 20 -



(a)

(b)

BA CIN

Ap Bp

BsAs

Ae

Cp

Cs

Ce

Bp

d(INp) d(Ap) d(Bp)

d(INs) d(As) d(Bs)

d(INr)

d(Cp)

d(Cs)

d(Cp)

d(Cs)

Error detected

d(Ar)

d(Ap)

Error

0 1 32 4

Clock cycle (CC) 14 15

Re-execution

9 10 1211 13

R2 R3Control Step (CStep)

Cp

16

R4

d(Bp)

Fig. 2. An example for error correction by replay in DMR. (a) a DFG.
(b) replay the operations when an error is detected.

C. Error Correction in DMR by Replay
Figure 2(a) shows an example data-flow graph (DFG),

where a node represents an operation and an edge represents
data dependency between operations. With DMR, each opera-
tion is executed twice and these are called respectively thepri-
maryandsecondaryexecutions of the operation. They are de-
noted as ‘Ap’ and ‘As’ for operation A. Figure 2(b) shows the
schedule of operation executions and comparisons. Let d(Gm)
denote the result produced by Gm for operation G (m = p or
m= s). For example, Ap and As start in control step (CStep) 0
at clock cycle (CC) 9, both Ap and As take one CC, and d(Ap)
and d(As) are stored in registers at the end of CC 9. d(Ap) and
d(As) are read from the registers and compared their equality
by the comparison ‘Ae’ in CStep 1 at CC 10.

When Ce detects an error as illustrated in Fig. 2(b), the er-
ror exists either in the execution of Bp, Bs, Cp or Cs, or in
the data d(Ap), d(As), d(Bp), or d(Bs) (in this example, the
error occurred in d(Ap) in CC 2). The error is corrected by
executing the necessary operations again [10]. This is called
replay. Replay of Bp requires the error-free input data of A.
Thus another copy of the result of A denoted as d(Ar) is kept
in a register not affected by the error in d(Ap) or d(As). Due to
the error model of at most one operation or one data contains
an error at a time, when an error is detected by Ce, d(Ar) is en-
sured to be error-free. Let such data for replay be calledreplay
input. The replay input d(Ar) is copied to the primary register
at the end of CC 13, and Bp is replayed using the data in CStep
R2 at CC 14. There is another way to use the replay input and
it is discussed in Sect. 3. Cp is then replayed in Cstep R3 at CC
15 using the replayed d(Bp) as shown in Fig. 2(b). At the end
of the replay, d(Cp) is copied as d(Cs), and the normal DMR
operation resumes.

The execution of operations are delayed by the replay when
an error is detected. It is calleddelay penaltyand denoted as
Pd. In real time applications, an upper tolerance limit is im-
posed on the delay penalty.

D. Redundant design of controller
Generally, a circuit consists of a datapath that performs cal-

culations and a controller that controls the datapath. Just like
the datapath, the controller can also experience soft errors. Fig-
ure 3 shows an outline of the (non-redundant) circuit. The con-
troller consists of a register CStep and combinational circuits

M
U

X

CStepNCStep SG

CCore

Datapath

M
U

X

FUs REGs

control signals

Fig. 3. Processing system consisting of controller and datapath.

M

M

M

CCore1

CCore0

CCore2

SG1

SG0

SG2

Datapath1 M

M

M

Datapath0

Datapath2

controller datapath

Fig. 4. Full TMR configuration of controller and datapath.

DatapathS

DatapathP

REGsR

M

M

M

CCore1

CCore0

CCore2

SGS

SGP

SGR

C

error in datapath

controller datapath

Fig. 5. The configuration of TMR controller and DMR datapath.

NCStep and SG. CStep stores the current control step in the
schedule of processing execution. NCStep calculates the next
control step based on the current CStep value. The SG is a
combinational circuit that generates control signals for the dat-
apath in order to cause the datapath to perform operations de-
termined by the processing execution schedule in each control
step. CStep and NCStep are called controller core (CCore).

The datapath consists of functional units (FU), register
(REG), and multiplexers (MUX).

D.1. Full TMR
Figure 4 shows a full TMR for controllers and datapaths.
CCore, SG, and datapaths are all tripled, and the CStep out-
put in the controller and the REG output in the datapath are
determined by the majority voter M. Compared to the non-
redundant case, the area of the controller and datapath is three
times larger, and the area of the majority voters is also added.

D.2. TMR controller and DMR datapath
Figure 5 shows a method of configure the datapath in DMR to
reduce the area of the datapath. The duplicated datapaths are
DatapathP for primary execution and DatapashS for secondary
execution. Comparator C compares the values of the primary
and secondary registers, and if they do not match, an error ex-
ists in the datapath. Register REGsR is used for replay input.
The control signals for DatapathP, DatapathS, and REGsR are
generated by the combinational circuits SGP, SGS, and SGR,
respectively. Since the controller needs to control replay exe-
cution in addition to normal execution, the complexity of the

- 21 -



DatapathS

DatapathP

REGsR

M

SGS

SGP

SGR

C

error in datapath

C

CStep2

L

CStep3

RCStep

e
rr

o
r 

in
 c

o
n
tr

o
lle

r

controller datapath

CCore1

CCore0

C

Fig. 6. DMR configuration of controller and datapath.

0

1

A
B

C

D

error in datapath

a

CStep0

NCStep0

CStep1

NCStep1

CStep2

CStep3

C L

RCStep

M

CStepS

CStepP

DatapathS

DatapathP

SGS
To

To
SGP

E

F

C

SGR

=0 if not equal

REGsR
To

b

Fig. 7. The proposed architecture of DMR controller.

controller increases compared to the full TMR case, and the
area increases accordingly. The effect of increased controller
area is tripled in TMR controller.

III. T HE PROPOSEDMETHOD

A. DMR controller

Figure 6 shows a proposed configuration of redundancy,
where not only the datapath but also the controller is config-
ured with DMR. The detail of the proposed DMR controller is
shown in Fig. 7. The registers CStep are tripled, and are called
CStep0, CStep1, and CStep2. The combinational circuit NC-
Step that calculates the next CStep value is duplicated and is
called NCStep0 and NCStep1. Replay of the datapaths is con-
trolled using CStep0 and NCStep0. Generally, the number of
bits of CStep0 is larger than CStep1 and CStep2 because it rep-
resents CStep for replay. Furthermore, NCStep0 not only cal-
culates the CStep value for normal processing but also calcu-
lates the CStep value for replay, so the circuit scale of NCStep0
is larger than that of NCStep1. In normal operation, the output
of NCStep0 is used as the next value of CStep0 and CSep2, and
the output of NCStep1 is used as the next value of CStep1. The
majority vote of CStep0, CStep1, and CStep2 is duplicated and
used as inputs of NCStep0 and NCstep1, respectively. The ma-
jority vote results are CStepP and CStepS, and control signals
for the datapaths, DatapathP and DatapathS, are generated by
combinational circuits SGP and SGS, respectively. The value
of CStep2 is input to the combinational circuit SGR, which
generates control signals for the replay input registers REGsR.

CStep3 is a register that records the value of replay start
CStep, and the value is obtained by the combinational circuit
RCStep. When the result of comparing the outputs of NCStep0
and NCStep1 (marked as ‘a’ in the figure) shows a mismatch,
in order to start replay from the next CC, the multiplexer is

controlled to assign the value of register CStep3 to CStep0 and
CStep2. As a result, CStep0 and CStep2 will have the same
value, and CStep1 will have a different value, but CStepP is
equal to CStep0 by the majority vote. Hence during replay ex-
ecution, a control signal for replay is generated by SGP and
given to DatapathP based on the same value as CStep0. In the
case of a datapath error, replay is started in the same way as
in the case of an error in NCStep0 or NCStep1. Therefore,
the multiplexer selection signal is determined by the combina-
tional circuit L based on the comparison result ’a’, the error
detection signal of the datapath, and the value of CStep0 (to
distinguish whether normal operation or replay is in progress).

B. Responding to controller errors

The response to soft errors in each area of the controller will
be explained according to Fig. 7. Note that based on the error
model, if an error occurs in any area, it is guaranteed that there
is no error in other areas.
Area A: An error in CStep0 is corrected by majority vote. An
error in CStep1 is detected by the comparison of the outputs
of NCStep1 and NCStep0, and replay is activated. If there is
an error in CStep2, CStepP and CStepS are correct and the
datapath operates normally. REGsR may contain erroneous
data but the values are not used and will be overwritten by
correct value before a next error occurs.
Area B: If there is an error in NCStep0 or NCStep1, the com-
parison result ‘a’ indicates a mismatch. Then the multiplexer
transfers the value of CStep3 to CStep0 and CStep2, and replay
is started. When an error occurs in NCStep0 or NCStep1, it
means that there is no error in the CStep values and the correct
operation is executing. Nevertheless, replay is intentionally
started before CSteps receive incorrect values, thereby elimi-
nating a circuit for correcting errors in the NCStep circuits.
Area C: If an error occurs, unnecessary replay will be started
(false error detection). Since the replay itself is performed cor-
rectly, there is no real harm other than a delay penalty. If there
is an error in the multiplexor, CStep0 and CStep2 receive in-
correct value, and an error is caused in the datapaths and replay
starts. Since CStep1 and CStep2 are not equal, the load signals
to REGsR are disabled. Thus the replay input values are main-
tained and used in replay.
Area D: If an error occurs, CStep3 is erroneous, but replay
does not start, and the value is not used. CStep3 will be over-
written by correct value before a next error occurs.
Area E: If the majority voter M is incorrect, CStepP and
CStepS are different, and the error is detected through NC-
Step0 and NCStep1. Further, an error in any of M, SGP, or SGS
results in erroneous control signals to the datapaths. Then, Dat-
apathP and DatapathS perform different processing, resulting
in a mismatch in the results, and an error is detected. In both
cases, replay will start and correct the error.
area F: It is possible for REGsR to hold an incorrect replay
input value due to an error in the comparator C or SGR, but
the replay will not start and REGsR will be overwritten by the
correct replay input data before a next error occurs.

- 22 -



REGsPFUsP

REGsR

DatapathP

Fig. 8. The configuration of DatapathP and REGsR for registered input (A1).

REGsPFUsP

REGsR

DatapathP

Fig. 9. The configuration of DatapathP and REGsR for direct input (A2).

REGsPFUsP

REGsSFUsS

DatapathP

DatapathS

Fig. 10. Copying the replay results from DatapathP to DatapathS.

C. How to use replay input data

When executing replay, the data stored in REGsR is used as
replay input data to perform the operations necessary for error
correction. Replay is performed by the primary execution dat-
apath DatapathP (functional unit FUsP and register REGsP).
There are two possible ways to use replay input data.

The first method copies the replay input data from REGsR
to the appropriate register in REGsP, and FUsP reads the data
from REGsP and performs the replay operation. This is called
the registered input method (Method A1). In this method, in
order to transfer the data of REGsR to REGsP, the output of
REGsR is connected to the input of REGsP through a multi-
plexer, as shown in Fig. 8. One CStep is required to transfer
the replay input data before executing the replay operation.

The second method immediately inputs the replay input data
read from REGsR to the appropriate FUsP and executes the re-
play operation. This is called the direct input method (Method
A2). In this method, the output of REGsR is directly connected
to the input of FUsP through a multiplexer, as shown in Fig. 9.
Calculations for error correction can be executed from the first
CStep of replay.

D. Replay control step assignment

The controller manages CStep not only for normal process-
ing execution but also for replay execution. Normal execution
of a certain process consists of a total ofN CSteps, and each
CStep of normal execution is expressed as ‘Ck’ (0 ≤ k≤N−1).
When the integerk is expressed as a binary number, the num-
ber of bits of CStep in normal execution isB = dlog2N−1e.
Note thatdxe is the smallest integer not smaller thanx. ‘Rk’
represents the CStep executed during replay corresponding to
‘Ck’ in normal execution.

In DMR, multiple error detection times are set in consid-
eration of the upper limit of the delay penalty, and different
replays are executed depending on which time an error is de-

1

2

3

4 5 6 7

8

27

24

23

25 26

10

9

16

15 17 20 22

18 19

14

13

12 11

31

30

29 28

21

33 32

34

D

D D

D D

D

D

x0

Fig. 11. The DFG of 5th order wave elliptic filter (WEF).

tected. Now, there areP replays, and the number of CSteps
executed by theith replay is expressed asLi (i = 1,2, . . . ,P).

Consider the following two methods in assigning CSteps for
replay. The first method is to sequentially assign CSteps after
N to replay. This method is called a sequential assign method
(B1). The replay input data shall be used according to A1 de-
scribed in the previous section. LetC0,C1, . . . ,CL1−1 be the
CSteps targeted for the first replay execution. In the sequential
assign method, the replay input data is copied in CStepN, R0

is executed in CStepN + 1, R1 in CStepN + 2, andRL1−1 in
CStepN+L1. The CSteps of normal execution targeted for the
second replay areCL1,CL1+1, . . . ,CL1+L2−1. Copying replay in-
put data is executed in CStepN + L1 + 1, RL1 is executed in
CStepN + L1 + 2, RL1+2 in CStepN + L1 + 3, andRL1+L2−1

in CStepN + L1 + L2 + 1. The same shall apply hereinafter.
In this way, the bit patterns of the CStep values ofCk andRk

are generally different.Ck andRk perform the same processing
in DatapathP, but since the bit patterns of the CStep values are
different, the complexity of the control signal generation cir-
cuit SGP increases and the circuit area increases accordingly.

Method A2 described in the previous section does not re-
quire CStep to copy replay input data. The second method
of assigning CStep to replay assumes the method A2 and as-
signs CStepNN +k to Rk. This method is called a copy assign
method (B2). Note thatNN is a power of 2 that is not smaller
thanN, andNN = 2B. Similar to method B2, the least signifi-
cantB bits of the CStep assigned toCk andRk have the same
bit pattern. In the first CStep of replay, REGsR is selected
as the FUsP input, and it is different from normal execution
where REGsP is selected. Thus the control signals are not ex-
actly the same for the normal execution and the replay, but for
other CSteps, the control signals are identical. Therefore, it
is expected that an increase in the area of the control signal
generation circuit SGP can be suppressed.

In either method, in the last CStep of replay, the results
executed in DatapathP are copied to REGsS in DatapathS in
preparation for resuming normal execution. Hence wiring and
a multiplexer are required to select the output of FUsP and in-
put it to REGsS, as shown in Fig. 10.

IV. EXPERIMENTAL RESULTS

We evaluate the area of DMR LSI using the proposed DMR
controller. Targeted processing is 5th order wave elliptic filter
(WEF) (26 additions, 8 multiplications), 8 input 8 output pro-
cessing (8x8) (24 adds, 12 muls), 16 input 16 output processing
(16x16) (64 adds, 32 muls) and the DFGs are shown in Figs. 11
to 13, respectively. In the DFGs, ‘+’ represents an addition and

- 23 -



17

18

19

20

33

12

11

10

9

13

14

15

16

21

22

27

28

25

26

5

6

7

8

2

3

4

1

34

35

23

24

31

32

30

36

29

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Fig. 12. The DFG of 8-input, 8-output processing (8x8).

53

54

55

56

89

44

43

42

41

49

50

51

52

65

66

75

76

73

74

29

30

31

32

26

27

28

25

90

91

67

68

79

80

78

92

77

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

20

19

18

17

61

62

63

64

93

48

47

46

45

57

58

59

60

69

70

83

84

81

82

37

38

39

40

34

35

36

33

94

95

71

72

87

88

86

96

85

24

23

22

2113

14

15

16

10

11

12

9

5

6

7

8

2

3

4

1

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

Fig. 13. The DFG of 16-input, 16-output processing (16x16).

1 10

16 21

15 9 18

19

6 5 8 12 2 3 14 11

27 22 24 26 33 23 29 34 31 28

17

ADD0

20

7

25 32

4

30

13

ADD1

MUL0

MUL1

REG0

REG1

REG2

REG3

REG4

REG5

REG6

REG7

REG8

REG9

31

11

x0

x3

x14

x11

x19

x34

x28

x31

1

22

4

5

20

2

30

10 9 7 6

13

16

21

18

19

33

32

27

24

25 26

34

28

1517 8

12

23

29

3

14

REG20

REG21

REG22

REG23

REG24

REG25

REG26

REG27

REG28

REG29

14

x0

x3

x14

x11

x19

x34

x28

x31

1

22

10

31

6

21

27 26

15 8

12

23 29

1 2 3 4 65 8 13 177 109 1211 161514 180CStep

Fig. 14. The schedule and binding of WEF.

ADD0

ADD1

MUL0

5

2

7

13

14

15

17

16

2015

4

18

196

5

8

13

2

3

14 17 27

32

2526

30 29 31

28

11 21

9 23 33 3412 22

10 24 35 36MUL1

REG0

REG1

REG2

REG3

REG4

REG5

REG6

REG7

REG8

REG9

REG10

REG11

x0

x1

x2

x3

x4

x5

x6

x7

1

x0

x4

3

21

x3

x7

4 22

11

12

x1

x5

19

23

x2

20

24

x6

9

17

6

10

18

26 288 16

30 32

2

13

14

REG24

REG25

REG26

REG27

REG28

REG29

REG30

REG31

REG32

REG33

x0

x1

x2

x3

x4

x5

x6

x7

1

3

21

4 22

11

12 23

24

9

17

10

1 2 3 4 65 8 137 109 12110CStep

18

Fig. 15. The schedule and binding of 8x8.

‘∗’ represents a multiplication. The schedule of operations,
the binding between operations and FUs, and the binding be-
tween data and registers were assumed to be given as shown

ADD0

ADD1

MUL0

MUL1

1

2

3

4 6

5 8

7

9 11

12

13

14

16

15

18

17 19

10

21

22 23

24

26

25 28

27

29

20

31 33

32 34 36

35

38

37 3930

41

42 43

44 46

45

48

47

49

40

51

52 53

5456

55

58

5759 50

61

62

63

64

66

65 68

67 69

60

71

72

7374

76 75

78 77

79

70

8182

8384 86 85

88 87

89

80

91

92

93

94

96

9590

REG0

REG1

REG2

REG3

REG4

REG5

REG6

REG7

REG8

REG9

REG10

REG11

REG12

REG13

REG14

REG15

REG16

REG17

REG18

REG19

REG20

REG21

REG22

REG23

x1

x2

x3

x4

x6

x5

x8

x7

x9

x0

x10

x11

x12

x13

x14

x15

1

2

3

4

6

5

8

7

9

26

25

28

27

29

30

31

32

41

42

43

44

46

45

48

47

38

37

53

54

58

57

61

62

49

50

33

34

36

35

x2

x4

x6

x0

x8

x10

x12

x14

74

76

78

80

84

82

88

86

x1

x3

x5

x7

x9

x11

x13

x15

40

39

10

11

12

13

14

16

15

18

17

19

20

21

22

23

24

51

52

56

55

59

60

63

64

66

65

68

67

69

70

71

72

REG48

REG49

REG50

REG51

REG52

REG53

REG54

REG55

REG56

REG57

REG58

REG59

REG60

REG61

REG62

REG63

REG64

REG65

x1

x2

x3

x4

x6

x5

x8

x7

x9

x0

x10

x11

x12

x13

x14

x15

1

2

3

4

6

5

8

7

26

25

28

27

41

42

43

44

46

45

48

47

53

54

58

57

61

62

49

50

33

34

36

3518

17

19

20

21

22

23

24

66

65

68

67

69

70

71

72

1 2 3 4 65 87 90 11 12 13 14 1615 1817 1910 21 22 23 24 2625 2827 2920 31 32 3330CStep

Fig. 16. The schedule and binding of 16x16.

TABLE I
RESOURCES(16 BITS)

Area [µm2]
Adder 258
Multiplier 3973
Register 297
Comparator 115
Majority voter 120
2-to-1 Multiplexor 92

in Figs. 14 to 16. For example, 2 adders (ADD0, ADD1), 2
multipliers (MUL0, MUL1), and 10 registers (REG0 to REG9)
were used for DatapathP in WEF. The schedule and binding for
primary and secondary operations were identical. Hence addi-
tional 2 adders (ADD2, ADD3), 2 multipliers (MUL2, MUL3),
and 10 registers (REG10 to REG19) were used for DatapathS
in WEF although these are not shown in Fig. 14.

The comparisons to detect soft-error in datapaths were in-
serted so that the delay penalty for each replay does not ex-
ceed 6 CCs. Then the necessary replay input data were derived
and the binding between the replay input data and REGsR reg-
isters were given as shown in Figs. 14 to 16. For example, as
REGsR, 10 registers (REG20 to REG29) were used to store re-
play input in WEF. Consequently, 4 adders, 4 multipliers, and
30 registers as well as necessary multiplexors are used in the
datapath for WEF. Similarly, 4 adders, 4 multipliers, and 34
registers were used for 8x8, and 4 adders, 4 multipliers, and 66
registers for 16x16. Note that Figs. 14 to 16 show the binding
of REGsR for replay input usage method A2. In the case of
A1, the end time of each replay input is 1 CC shorter than A2
but the number of REGsRs is the same as A2.

The LSI areas of 16-bit resources are shown in Table I.
These areas were determined by logic synthesis targeting a
CMOS 90 nm process and the CC of 1 ns. An addition takes
one CC. A multiplication takes two CCs and is not pipelined.
The controller is described using HDL and its area is obtained
by logic synthesis in the same way as the resources.

- 24 -



2500

1000

1500

2000

500

0
TMR DMRa DMRb

CStep

NCStep

Sig Gen

Misc

1441

1941
2055

A
re

a
 [

µm
2
]

(a)

1000

1500

2000

500

0
TMR DMRa DMRb

CStep

NCStep

Sig Gen

Misc

1077

1622 1596

A
re

a
 [

µm
2
]

(b)

1000

4000

0
TMR DMRa DMRb

CStep

NCStep

Sig Gen

Misc

1889

4055

3147

3000

2000A
re

a
 [

µm
2
]

(c)

Fig. 17. The area of the redundant controllers. (a) WEF, (b) 8x8, (c) 16x16.

10000

50000

40000

0
TMR DMRa DMRb

Controller

Data Register

MUX

FU & others

40545

33628 33450

30000

20000

A
re

a
 [

µm
2
]

(a)

10000

50000

40000

0
TMR DMRa DMRb

Controller

Data Register

MUX

FU & others

41802

34452 34685

30000

20000

A
re

a
 [

µm
2
]

(b)

10000

50000

40000

0
TMR DMRa DMRb

Controller

Data Register

MUX

FU & others

62955

54482 53664

30000

20000

80000

70000

60000

A
re

a
 [

µm
2
]

(c)

Fig. 18. The total area of the redundant processing systems. (a) WEF, (b) 8x8, (c) 16x16.

The experimented configurations of the replay input usage
method and the replay control step assignment method are
DMRa with A1 and B1 and DMRb with A2 and B2. The
breakdown of the area of the controller is shown in Fig. 17.
The comparison result of LSI area among the conventional
full-TMR configuration (TMR) and the proposed DMR con-
figuration is show in Fig. 18.

Regarding replay control step assignment, DMRb uses
methods B2, where the least significantB bits of CStep as-
signed to CStepCk in normal execution and CStepRk in replay
execution are identical. From Fig. 17, it can be seen that the
area of the circuit signal generation circuit of DMRb tends to
be smaller than that of DMRa.

DMR requires data registers REGsR for replay input data,
and the number of registers is almost the same as REGsP and
REGsS. Therefore, it can be seen from Fig. 18 that the regis-
ter areas for DMR are almost the same as TMR, which have
tripled data registers. The number of FUs in the datapath for
DMR is reduced to two-thirds of TMR. Since the area of a
multiplier is large compared to other resources, the reduction
in the number of multipliers results in a smaller area of DMR
than TMR as shown in Fig. 18. Comparing TMR and DMRb,
the achieved area reduction is 17% for WEF, 17% for 8x8, and
14% for 16x16.

V. CONCLUSIONS

In this paper, an architecture of the DMR controller was pro-
posed to implement the controller as well as the datapath in
DMR. Total area of the LSI with the DMR configuration can
be reduced up to 17% from full TMR configuration. Minimiz-
ing the number of registers for replay input data, optimizing
the bindings of FUs and registers for minimizing the area of

multiplexors, and the consideration of error check locations in
the schedule for further optimization remain as future work.

ACKNOWLEDGEMENTS

This work was supported through the activities of VDEC,
The University of Tokyo, in collaboration with NIHON SYN-
OPSYS G.K.

REFERENCES
[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design

& Test of Computers, vol.22, no.3, pp.258–266, 2005.
[2] F. Wang and V.D. Agrawal, “Single event upset: An embedded tutorial,”

Proc. Int. Conf. VLSI Design, pp.429–434, 2008.
[3] R.E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy

to improve computer reliability,” IBM Journal of Research and Develop-
ment, vol.6, no.2, pp.200–209, 1962.

[4] S. Matsuzaka and K. Inoue, “A dependable processor architecture with
data-path partitioning,” IPSJ Tech. Report, vol.2004-SLDM-117, pp.7–
11, 2004.

[5] S. Mitra, M. Zhang, S. Waqas, N. Seifert, B. Gill, and K.S. Kim, “Combi-
national logic soft error correction,” Proc. IEEE Int. Test Conf., pp.824–
832, 2006.

[6] Y. Suda and K. Ito, “A method of power supply voltage assignment
and scheduling of operations to reduce energy consumption of error de-
tectable computations,” Proc. The 17th Workshop on Synthesis And Sys-
tem Integration of Mixed Information Technologies, pp.420–424, 2012.

[7] J. Oh and M. Kaneko, “Area-efficient soft-error tolerant datapath synthe-
sis based on speculative resource sharing,” IEICE Trans. Fund., vol.E99-
A, no.7, pp.1311–1322, 2016.

[8] J. Oh and M. Kaneko, “Latency-aware selection of check variables for
soft-error tolerant datapath synthesis,” IEICE Trans. Fund., vol.E100-A,
no.7, pp.1506–1510, 2017.

[9] K. Ito, Y. Ishihara, and S. Nishizawa, “Minimization of vote operations
for soft error detection in dmr design with error correction by operation
re-execution,” IEICE Trans. Fund., vol.E101-A, no.12, pp.2271–2279,
2018.

[10] Y. Kitazawa and K. Ito, “Register minimization and its application in
schedule exploration for area minimization for double modular redun-
dancy lsi design,” IEICE Trans. Fund., vol.E105-A, no.3, pp.530–539,
2022.

- 25 -


