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Abstract—Binarized neural networks (BNN) al-

low compact hardware implementation by binarizing

weight values and neuron activations. The critical

path delay of a combinational circuit implementing

a BNN neuron may be curbed by adopting a Wallace

tree of full-adders. However, in FPGA implementa-

tion, a 3-input full-adder does not make full use of

LUTs of more than 5 inputs. This paper proposes

the use of a GPC (generalized parallel counter) based

compressor tree in FPGA implementation of a BNN

neuron to reduce both the delay and size of the re-

sulting circuit. We further enhance the efficiency of

the circuit by reducing the comparison of the pop-

count and threshould into reference to the carry sig-

nal from the compressor tree. The critical path delay

and the slice count of our BNN neuron, implemented

on a Xilinx Artinx-7 FPGA, were smaller by 15.1%

and 11.1%, respectively, compared to those of the cir-

cuit produced by regular logic synthesis, at number of

inputs 1024.

I. Introduction

Neural networks are a powerful tool for image and audio
recognition, and they are being used in a wide range of
applications.
With the recent development of network technologies,

various data are collected from mobile or edge devices.
Data obtained on the edge side is often transferred to
the server side for processing, for computational load of
inference in neural network is high. However, from the
perspective of communication data volume and security,
attempts have been made to shift this processing to the
edge side. To achieve processing on edge devices with lim-
ited computational resources and strict power consump-
tion constraints, research is being conducted on imple-
menting part or all of the inference processing of neural
networks in hardware [1].
A popular approach to reduce resources in the hard-

ware implementation of neural networks is to represent
data with fixed-point numbers and to reduce the num-
ber of bits. The values may be constrained to binary,
and then the neural network is referred to as a Binarized

Neural Network (BNN) [2]. The BNN allows multiplica-
tion operations to be calculated with a single logic gate,
leading to a significant reduction in hardware resources.
Thus, research on efficient hardware implementation of
BNNs has been conducted in recent years [3].

In the hardware implementation of BNN neurons, it
can be constructed using XNOR gates to calculate prod-
ucts, a pop counter (parallel counter) to count the num-
ber of ones in the result, and a comparator to compare
with a threshold. When considering a combinational cir-
cuit implementation, XNOR operations can be performed
in parallel, so the comparison with the pop counter and
threshold becomes the bottleneck in the critical path de-
lay.

A BNN neuron can be constructed using XNOR gates
to calculate products, a pop-counter (parallel counter) to
count the number of ones in the products, and a compara-
tor to compare the count with a threshold. In the case of
combinational circuit implementation, XNOR operations
are performed in parallel, so the pop-count and compari-
son become the bottleneck in the critical path delay.

The pop-count can be attributed to multiple-input ad-
dition, which can be achieved by constructing Wallace
trees [4] or Dadda trees [5] with full adders to reduce
the critical path delay. However, when implementing on
FPGA devices of the lookup table (LUT) type, a 3-input
full adder may not be an ideal building block because the
number of inputs to the LUT is typically around 5 to 7. As
a measure to fully utilize the LUTs, the use of expanded
full-adders, such as 6-input/3-output adders, or further
extended generalized parallel counters (GPCs), has been
proposed.

The GPC is a parallel counter that allows both inputs
with a weight of 1 and inputs with a weight of 2k. Litera-
tures [6, 7] propose extremely efficient ways of construct-
ing addition trees for FPGA implementation, targeting
multiple-input additions in multiplication operations and
the like.

This paper presents an efficient FPGA implementation
of a BNN neuron utilizing GPCs. The use of GPC tree
to construct the pop-counter is proposed to minimize its
critical path delay and the circuit size. Furthermore, com-
parison with the threshold is replaced by a test of the most
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(a) BNN neuron

(b) Logic circuit implementation

Fig. 1. BNN neuron and its logic circuit implementation

significant carry output by switching the threshold with
a bias, which further reduces the delay and circuit size.
We have implemented BNN neurons on Xilinx’s Artix-

7 FPGAs based on this method. Compared to neurons
generated by simple logic synthesis, our implementation
achieved a 11.1% reduction in slice usage and an 15.1%
reduction in delay time when the number of inputs to the
neuron is 1024.

II. FPGA Implementation of Binarized Neural
Networks

The activation value a of a neural network neuron can
be expressed as follows, as shown in Fig. 1a :

a = f(B +
N∑
i=1

xi · wi),

where N is the number of neuron inputs, xi represents
the i-th input, wi is the weight associated with the i-th
input, B is the bias, and f is the activation function.
In the case of a binarized neural network (BNN), the

values of a, xi, and wi are constrained to be either +1 or
-1, and f(x) = 1 if (x ≥ 0) and f(x) = −1 otherwise.
Now, if we encode the values +1 and -1 as 0 and 1,

respectively, we can replace the multiplication of inputs
and weights with the Exclusive-NOR (XNOR) operation.
As a result, a BNN neuron can be constructed with XNOR
gates, an adder (pop counter) to count the number of ones
in the output, and a comparison with a threshold T , as
shown in Figure 1b.
In this paper, we consider implementing a BNN neu-

ron as a combinational circuit, shown in Fig. 1b , on an
FPGA.

A. Lookup Tables (LUTs) and Carry Chains in FPGAs

Lookup table (LUT) type FPGAs utilize configurable
components (LUTs), flip-flops, and programmable inter-
connections to implement custom logic functions. LUTs
store truth tables in memories to implement logic func-
tions. The typical number of inputs to LUTs ranges from

Fig. 2. Example implementaion of carry chain

Fig. 3. FPGA-implementation of GPC(1,5;3) [8]

5 to 7. In some FPGAs, a k-input/1-output LUT may be
used to implement a k− 1-input/2-output logic gate that
share common input lines.
Furthermore, some FPGAs have built-in carry chains

which are used for efficient implementation of adders and
subtractors. The carry chain accepts the carry generate
and carry propagate signals for each digit of two binary
numbers as inputs and computes the sum for the binary
numbers. An example of a 4-digit carry chain circuit is
shown in Figure 2. gi and pi represent the carry generate
and propagate signals, respectively, while si denotes the
resultant sum.
A module called a slice or a logic block contains sev-

eral LUTs, carry chains, and flip-flops. Logic circuits are
realized using these slices and programmable interconnec-
tions.

B. Generalized Parallel Counter (GPC)-Based Addition
Tree

Wallace tree [4] and Dadda tree [5] are recognized as
established logic circuit designs for multi-input addtion,
with both utilizing full-adders as their basic building
blocks.
However, in the context of FPGA implementation, a

traditional 3-input/2-output full adder fails to utilize the
potential of LUTs, which typically offer 5 to 7 inputs. As
a consequence, the adoption of extended full-adders, such
as 6-input/3-output adders, and more advanced General-
ized Parallel Counters (GPC), has been suggested. These
strategies are designed to enhance FPGA circuit efficiency
in terms of both size and critical path delay [6] [7] [8] [9]
[10].
Unlike the full adder or the 6-input/3-output adder, the

GPC accepts inputs of weight 2k as well as 1 and calcu-

- 33 -



Fig. 4. GPC-based adder tree

lates the sum of the inputs. For example, GPC(1,5;3)
performs addition of a 1-bit input of weight 21 and 5-
bit inputs of weight 20, and outputs the result in 3 bits.
GPC(1,5;3) can be constructed as shown in Fig. 3 , where
b1 is the weight 21 input and a1 through a5 are weight 20

inputs, and (s2, s1, s0) are resulting outputs. It may be
accomodated in a single slice with two LUTs and a carry
chain.
An example of the GPC-based addition tree is shown

in Fig. 4 . Each dot represents a single bit, and the
dots enclosed in rectangles represent the inputs and out-
puts of GPCs. Two types of GPCs, GPC(7;3) and
GPC(1,3,4,3;5), are used in this design.
The total number of bits are reduced through GPCs to

yield two binary numbers. The final sum is computed by
adding the two numbers using a row adder whose details
will be shown later. The GPCs reduce the total number of
bits until they become two binary numbers. The final sum
will be computed by adding these two numbers, whose
details will be presented later.
In [6] and [7], methods were introduced for constructing

optimal addition trees utilizing GPCs, targeting multiple-
input addition in binary multiplication and related appli-
cations. They aim to generate circuit configurations with
minimal levels, along with the minimal LUT counts or
slice counts, for given size and quantity of binary num-
bers.

III. Efficient FPGA Implementation of BNNs
Using GPCs

This paper presents an efficient FPGA-targeted design
of a BNN neuron.
It proposes the use of optimal GPC construction for the

implementation of a population counter. It also proposes

Fig. 5. FPGA-implementation of BNN neuron

Fig. 6. Replace threshold comparison with carry reference

optimation of the circuit design for threshold comparison.
The overall circuit configuration for the BNN neuron

assumed in this paper is shown in Fig. 5 . At first, the
count of 1’s in the outcome of XNOR operations between
K pairs of inputs and weights are computed using LUTs,
with K being set to 3 in the figure ( 1○). The result-
ing output is represented in binary format, represented
as (s1, s0). Then, the sum of these outputs is calculated
( 2○). If the sum equals or exceeds the threshold T T, the
output is set to 1; otherwise, it is set to 0 ( 3○).
In this paper, we do not rely on logic synthesis for 2○

but instead, construct a GPC tree so as to reduce circuit
size and critical path delay. Furthermore, the result of 3○
is determined only by referencing the carry signal from
the MSB of the addition result, by incorporating a bias
of 2n − T in the addition, where n is the number of the
bits in the sum.

A. Implementation of Pop-counter Using GPC Tree

The configuration of the addition circuit in this paper
is illustrated in Fig. 7 . The inputs to the addition tree
are N/k binary numbers, with their individual bits rep-
resented by dots (the figure depicts the senario for k = 3,
where each binary number consists of two bits). A GPC
tree is employed to reduce the number of bits iteratively,
until they converge to two binary numbers. These two
binary numbers are then added together to produce the
final result. The adder used in the final step is referred to
as a ”row adder.”
The construction of the GPC (Generalized Pop Coun-

ters) tree follows the methodology proposed in references
[6], [7], [8], [9], and [10]. Given our assumption of imple-
menting BNN neurons as combinational circuits in this
paper, our goal is to identify the GPC tree configuration
that minimizes the number of slices among the ones with
the fewest stages. We formalize this as an optimization
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Fig. 7. GPC-based adder tree

Fig. 8. FPGA-Implementation of row adder

problem using integer linear programming.
The row adder in the last step in Fig. 7 can be ef-

ficiently implemented using FPGA carry chains. Fig. 8
shows an example design of a row adder employing a 4-
digit carry chain. Let us denote i-th digits of the two
binary numbers to be added as ai and bi. The carry gen-
eration signal gi = ai · bi and the carry propagation signal
pi = ai ⊕ bi can be computed using a single 2-input/2-
output LUT. These signals are then fed into the carry
chain to generate the sum of the two binary numbers.

B. Threshold Comparison

Fig. 9 (a) illustrates a straightforward configuration
of the comparison circuit along with the row adder. The
output from the row adder is compared with a separate
comparator. In this paper, we attempt to eliminate the
comparator. The proposed circuit configuration is shown
in Fig. 9 (b). Instead of comparing the sum against the
threshould T , we integrate bias B = 2n − T into addition
(where n is the number of bits of the sum) and test only
the carry signal from the MSB.
This approach eliminates the requirement to compute

all the individual digits of the sum using the row adder.
Instead, it necessitates the generation of generator and
propagator signals only for the carry bit originating from
the most significant bit (MSB). To achieve this, we can
utilize the generator and propagator signals from two ad-
jacent digits (or, alternatively, three adjacent digits) com-
bined. This strategy effectively reduces the necessary
number of Look-Up Tables (LUTs), carry chains, and
the overall carry propagation delay during the calculation

(a) Conventional threshold comparison.

(b) Threshold comparison by carry referencing

Fig. 9. Threshold comparison

(a) Basic configuration

(b) Optimized configuration with our approach

Fig. 10. Parameter-embedded BNN neuron

process.

C. Application to Parameter-Embedded Neuron

When performing repeated inference using the same
weights and thresholds, it’s possible to embed the param-
eters of the neuron directly into the circuit rather than
supplying them from external memory, which lead to re-
duction both in circuit size and execution cycles.
The basic configuration of a parameter-embedded neu-

ron for BNN is shown in Fig. 10 (a). The XNOR opera-
tion between wi and xi is simplified: it becomes xi when
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TABLE I
List of GPCs

GPC [cite]
(1;1) (1,4,0,6;5) [9]
(3;2) (1,3,2,5;5) [6]
(7;3) [9] (1,3,4,3;5) [6]
(1,5;3) [9] (2,1,3,5;5) [10]
(2,3;3) (1,3,5;4) [6]
(6,2,3;5) [9] (2,2,3;4)
(6,0,6;5) [9] (2,0,7;4)
(6,1,5;5) [9] (2,1,5;4)
(1,4,1,5;5) [9]

module BASELINE_NEURON_8(
input wire [7:0]in ,
input wire [7:0] weight ,
input wire [3:0] threshold ,
output wire ans);

wire [2:0] dst0;
wire [2:0] dst1;
wire [3:0] sum;
LUT6 #(. INIT(64’ h9669699669969669 )) input6_0_lower(
.O(dst0 [0]), .I0(in[0]), .I1(weight [0]), .I2(in[1]),
.I3(weight [1]), .I4(in[2]), .I5(weight [2]));

LUT6 #(. INIT(64’ h9669699669969669 )) input6_1_lower(
.O(dst0 [1]), .I0(in[3]), .I1(weight [3]), .I2(in[4]),
.I3(weight [4]), .I4(in[5]), .I5(weight [5]));

LUT6 #(. INIT(64’ h9669699669969669 )) input6_2_lower(
.O(dst0 [2]), .I0(in[6]), .I1(weight [6]), .I2(in[7]),
.I3(weight [7]), .I4(1’h0), .I5(1’h1));

LUT6 #(. INIT(64’ hf99f90099009f99f )) input6_0_upper(
.O(dst1 [0]), .I0(in[0]), .I1(weight [0]), .I2(in[1]),
.I3(weight [1]), .I4(in[2]), .I5(weight [2]));

LUT6 #(. INIT(64’ hf99f90099009f99f )) input6_1_upper(
.O(dst1 [1]), .I0(in[3]), .I1(weight [3]), .I2(in[4]),
.I3(weight [4]), .I4(in[5]), .I5(weight [5]));

LUT6 #(. INIT(64’ hf99f90099009f99f )) input6_2_upper(
.O(dst1 [2]), .I0(in[6]), .I1(weight [6]), .I2(in[7]),
.I3(weight [7]), .I4(1’h0), .I5(1’h1));

assign sum = dst0 [0] + dst0 [1] + dst0 [2] +
dst1 [0]*2 + dst1 [1]*2 + dst1 [2]*2;

assign ans = (sum >= threshold );

endmodule

Fig. 11. HDL description of baseline neuron (N = 8)

wi is 1 and x̄i when wi is 0. If 6-input LUTs are avail-
able, 6 digits of xi can be processed together to produce
a 3-digit sum, which is fed into the paddition tree.

The same methodology of eliminating the comparator
can be applied, as illustrated in Figure 10 (b). Moreover,
if the bias B contains digits with a value of 0, these digits
can be safely disregarded, further reducing the complexity
of the addition tree.

IV. Implementation and Experiment

BNN neurons have been designed based on the pro-
posed method in Verilog HDL. The experimental plat-
form was the Xilinx Artix-7 FPGA (xc7a100tcsg324-3).
This FPGA is equipped with 6-input/1-output Look-Up
Tables (LUTs), which can alternatively function as 5-
input/2-output LUTs when input resources are shared.
The FPGA contains 15850 slices, each with four LUTs

and 4-bit carry chain. Logic synthesis was carried out
using Vivado 2023.1 for this experiment.
The set of GPCs utilized in this experiment is detailed

in TABLE I . All these GPCs are explicitly designed to
require no more than four LUTs and a carry chain, fit-
ting perfectly in a single slice. The configurations of the
GPC adder trees, aiming for the lowest levels and minimal
slices, were determined through integer programming1.
We utilized the CPLEX 22.1.0 solver, running on an In-
tel(R) Core(TM) i5-7200U CPU @ 2.50GHz. Remarkably,
all solutions were found to be optimal and were obtained
in less than one second.
The synthesis results are displayed in Table II, with (a)

representing the standard scenario where parameters are
not embedded, and (b) representing the scenario where
parameters are embedded. In both tables, N denotes the
number of inputs for the BNN neuron, and “slices” and
“delay” represent the number of utilized slices and the
critical path delay, respectively. Within each table, “base-
line” corresponds to a basic description of the adder tree
and threshold comparison. “GPC-tree” signifies the adder
tree constructed using GPCs, while “GPC-tree+bias” in-
dicates that the threshold comparison has been replaced
with referencing the carry from the MSB. Fig. 11 shows
Verilog HDL description of the baseline neuron for N = 8.
While the addition of three pairs of XNOR operations are
explicitly mapped to LUTs, summation and comparison
are expressed with standard arithmetic operations. In the
“GPC-tree” and “GPC-tree+bias” designs, every GPC is
explicitly assigned to a slice to prevent unintended in-
creases in the slice count.
For standard BNNs, a comparison between “baseline”

and “GPC-tree” demonstrates that circuit optimization
has led to reductions in all circuit sizes. When compar-
ing the performance of ”GPC-tree” with that of ”GPC-
tree+bias,” a decrease is observed, except for the case
when N = 512. This increase can be attributed to the
additional cost incurred by the introduction of bias. Nev-
ertheless, it is noteworthy that the delays experienced a
consistent decrease across all scenarios. In the case of
N = 1024, the circuit size and critical path delay were
reduced by 11.1% and 15.1%, respectively.
The trends observed for the parameter-embedded

BNNs are similar to those of the standard BNNs, but
the impact on circuit size is more pronounced in the
parameter-embedded BNNs. For instance, with N =
1024, the circuit size saw a significant reduction of 20.6%,
while the critical path delay decreased by 9.7%.

V. Conclusion

In this paper, we introduce an efficient method for
FPGA implementation of Binary Neural Network (BNN)

1The programs used for constructing the adder trees and GPCs
are available on GitHub at the following links: https://github.

com/void-hoge/cmpgen https://github.com/void-hoge/gpcgen
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TABLE II
Synthesis results

(a) BNN neuron

N 32 64 128 256 512 1024
slices baseline 28 69 177 176 352 677

GPC-tree 22 40 86 160 307 605
GPC-tree+bias 21 38 78 151 314 602

delay (ns) baseline 9.93 13.90 21.17 14.41 15.12 16.71
GPC-tree 9.64 10.24 11.64 13.32 14.99 15.48
GPC-tree+bias 8.72 8.86 10.43 12.26 14.12 14.18

(b) BNN neuron with parameter embedding

N 32 64 128 256 512 1024
slices baseline 16 42 110 102 231 442

GPC-tree 15 25 48 95 181 364
GPC-tree+bias 11 22 47 98 197 351

delay (ns) baseline 7.60 10.95 16.93 12.64 13.70 15.63
GPC-tree 8.28 9.21 10.72 10.97 13.21 14.82
GPC-tree+bias 8.81 8.69 10.06 10.94 12.73 14.12

Synthesizer: Xilinx Vivado (2023.1) Target: Xilinx Artix-7(xc7a100tcsg324-3)

neurons, utilizing Generalized Parallel Counters (GPC)
to construct the adder trees. Our approach yields no-
table advantages, achieving a 11.1% reduction in circuit
size and a 15.1% reduction in critical path delay compared
to straightforward logic synthesis when handling 1024 in-
puts.
We envision that this proposed method holds promise

not only for BNNs but also for FPGA implementations of
neural networks employing fixed-point arithmetic. Fur-
thermore, while our focus in this paper is on parallel
combinatorial circuit implementation, processing all in-
puts simultaneously, there are future prospects to explore
its applicability in parallel/serial hybrid implementations
or pipelined implementations, where inputs undergo pro-
cessing in multiple stages.
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