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Abstract— Toward the IoT era, where numerous
sensors and Al-driven analysis are deployed, we pro-
pose an on-chip image classification system that inte-
grates lightweight neural networks within CMOS im-
age sensors. The system combines in-pixel and in-
column analog convolution with digital matrix com-
putations. To assess the feasibility of the proposed
system, we evaluated the matrix computation circuit
area and image classification accuracy through soft-
ware simulations. The image classification accuracy
for the MNIST, Fashion-MNIST, and INRIA-Person
datasets reached 88.75%, 79.91%, and 83.79%, respec-

tively.

I. INTRODUCTION

In the IoT era, efficient integration of image sensors
and artificial intelligence (AI) is essential to reduce cost
and power consumption. Edge devices that perform data
processing at the sensor level have gained attention for
reducing data volume and communication overhead.

A method utilizing stacking technology has been pro-
posed to integrate AI processing capabilities into image
sensor chips [1]. Stacking technology requires advanced
fabrication technologies, which may lead to increased
manufacturing costs.

This study explores a method for implementing an im-
age classifier based on a lightweight neural network (NN)
directly on an image sensor chip, combined with in-pixel
analog convolution operations.

Fig. 1 shows the difference between conventional on-
device image classification systems and the on-chip image
classification system discussed in this paper. In on-device
image classification systems, a CMOS Image Sensor (CIS)
chip captures an image and transmits the digital data to
a Microcontroller Unit (MCU). The MCU processes the
image data by feeding them into an AI model, such as
a Deep Neural Network (DNN), to perform image classi-
fication. On the other hand, the on-chip image classifi-
cation system implements a lightweight matrix computa-
tion circuit, specifically a systolic array, within the CIS
chip. This configuration enables feature extraction and
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image classification to be performed entirely within the
CIS chip, including pixel processing and analog-to-digital
conversion (ADC), without imaging transmission to the
MCU. By outputting only the classification results, the
CIS chip significantly reduces communication overhead
with the MCU and further decreases the overall power
consumption of the system by offloading image process-
ing from the MCU.

This paper presents an evaluation of the matrix compu-
tation circuit area and the image classification accuracy of
the proposed on-chip image classification system through
software simulation. The remainder of this paper is struc-
tured as follows. Sec. 2 provides background, introducing
the general structure of a CIS and related studies on ana-
log convolution processing circuits. Sec. 3 proposes an
on-chip image classification system. Sec. 4 evaluates the
proposed system by assessing the area occupied by the
additional systolic array circuit, supposing the allocated
size less than 10% of the total area of the CIS chip. Sec. 5
examines the classification accuracy of the image classifi-
cation system using a publicly available data set, assum-
ing the configuration of the systolic array is feasible based
on the evaluation of Sec. 4. Finally, Sec. 6 concludes this

paper.

II. BACKGROUND INFORMATION

A. General Structure of CMOS Image Sensors

Fig. 2 shows the conventional block diagram of the CIS
chip. A CIS consists of a pixel array, a vertical scanning
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Fig. 2.: Block diagram of the CMOS Image Sensor

(v-scan) circuit, a Correlated Double Sampling (CDS) cir-
cuit, an Analog-to-Digital Converter (ADC), and a hori-
zontal scanning (h-scan) circuit.

e The vertical scanning circuit is connected to the row
shared lines of the pixel array, controlling both se-
lected row for readout and exposure time. The se-
lected row for readout is swept sequentially from the
top down.

e The horizontal scanning circuit is connected to the
column-shared lines and sequentially selects columns
to readout the digitized pixel signals, where one line
of pixel signal selected by the vertical scanning circuit
is digitized. The readout scan is taken place from left
to right, column by column.

e The CDS circuit is connected to the column-shared
lines and serves to reduce reset noise and fixed pat-
tern noise present in the pixel signal.

e The ADC converts the output voltage from the CDS
circuit into a digital signal. In a conventional CIS, a
column-parallel ADC architecture is commonly em-
ployed, where an ADC is laid out in each column.

B. Related Studies

For the CIS in image processing applications, research
has focused on extracting image features through in-pixel
or in-column analog processing during image capture.
This approach aims to reduce the computational load on
subsequent digital processing circuits and improve overall
system power efficiency.

Nakagawa et al. reported an in-pixel architecture capa-
ble of performing analog MAC (Multiply-Accumulate) op-
erations using crystalline IGZO (In-Ga-Zn-O) FET [2].
Additionally, Jeong et al. proposed an in-column architec-
ture where analog MAC (Multiply-Accumulate) circuits
are arranged along columns, enabling convolution opera-
tions on captured signals [3].
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Fig. 3.: Proposed Neural Network Structure

III. PROPOSED SYSTEM

A. Overall Architecture of the Three-Layer Convolu-
tional Neural Network (CNN)

Fig. 3 shows the structure of the proposed neural net-
work, which consists of three layers: an input layer, a hid-
den layer, and an output layer. First, image features are
extracted in the hidden layers by convolution processing of
the input image with random kernels. The extracted fea-
ture vectors are then processed with the ReLU activation
function. A fully connected network is employed between
the hidden and output layers, where pre-trained weights
are applied to the hidden layer output to obtain a non-
normalized classification results (logits). The CIS chip
transmits logits to the MCU. Finally, the MCU, the Soft-
max function normalizes the logits to produce the classi-
fication confidence.

B. Circuit Configuration of the On-Chip Image Classi-
fier

Fig. 4 shows the circuit configuration of the on-chip
image classifier. This design incorporates matrix compu-
tation circuit and filter computation circuit in addition to
the conventional CIS architecture.

e Convolution processing with random kernel is taken
place in both the pixel array and the column parallel
CDS circuit. Weights in row and column directions
are respectively controlled by the exposure time of
each pixel row and the gain of the each CDS circuit.

e The filter computation circuit sums the ADC out-
put values from neighboring columns using an adder.
Furthermore, the ReLLU activation function is real-
ized by subtracting a threshold value.

e The matrix computation circuit performs fully con-
nected layer operations on the intermediate feature
vector, which is the filter computation circuit output.
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Fig. 4.: Block diagram of the Image Classifier

C. In-Pixel Analog Convolution Using Random Kernels

Convolution operations are widely used in image classi-
fication tasks to extract spatial features from local regions
within an image. In this paper, the values of the convo-
lutional kernel are randomly determined and fixed. Ex-
posure time control per row and readout gain control per
column are combined to realize random weighting. Since
the typical CIS supports destructive readout of pixel sig-
nal charge, the pixel signal can be used only once for con-
volution. Therefore, the number of output rows obtained
after convolution is given by division of the number of
pixels by the kernel size. While pixel-wise weighting is
realized within the pixel array and in the column parallel
CDS, the addition operations are performed in the filter
computation circuit.

D. Filter Computation Circuit

The weighted pixel signals can be read as output volt-
ages from each pixel. These signals are then digitized
using an ADC, and summed to obtain the digital values
of the intermediate feature vector. Furthermore, thresh-
old subtraction is applied to perform activation processing
using the ReLU function. The ReLU function is widely
used in image classification tasks and is defined for an
input z as follows:

0 (xz<0)
z (z>0).

ReLU(z) = { (1)

E. Matrix Computation for the Fully Connected Layer
Using Systolic Arrays

The fully connected layer operation in neural networks
is realized with a matrix inner product. Consequently,

various matrix computation circuits have been proposed
as hardware accelerators for inference with DNN.

In this study, the fully connected layer operation is ap-
plied to the intermediate feature vector output from the
filter computation circuit, using a matrix computation cir-
cuit. Since the pixel signal is read out row by row, the
intermediate feature vector is fed into the matrix compu-
tation circuit row by row. To accommodate this row-by-
row sequence, a matrix computation circuit based on a
systolic array architecture [4] was designed.

Fig. 5 shows the matrix computation circuit based on
a systolic array where Processing Elements (PEs)—each
consisting of an adder, a multiplier, and a register—are
aligned in a array. First, pre-trained weight parameters
are supplied to each PE individually. The intermediate
feature values output from the filter computation circuit,
are sequentially transferred from top to bottom through
the registers within the PE array. Simultaneously, in-
termediate results from the Multiply-Accumulate (MAC)
operations are transferred left to right through the PE
registers. It is noted that the leftmost PE receives zero as
the first intermediate result. The PE array output is ac-
cumulated in each row of the matrix computation circuit
to generate the logits as the non-normalized classification
results.

Detailed PE array operations in convolution process-
ing are as follows. While the intermediate feature vector
is sequentially output from the filter computation circuit,
each PE in the systolic array simultaneously performs ver-
tical data propagation and horizontal MAC operations in
parallel. Specifically, the filter output is fed into each PE
in the first row, where each PE performs multiplication
with the corresponding weight. The PE then adds the
multiplication result to the partial sum generated by the
left-adjacent PE. The addition result is stored in a regis-
ter. The register is connected to the PE input of the next
column, enabling sequential horizontal propagation of in-
termediate results. This configuration ensures progressive
accumulation in the horizontal direction. Simultaneously,
the filter outputs are forwarded to registers in vertically
connected PEs, propagating from top to bottom. The
first-row PEs continue processing until the intermediate
feature vector from all pixel rows is read out.

PEs in the second and following rows remain idle until
they receive the intermediate feature vector from the row
above. Once the PEs receive the feature vector, the same
computational process as the first row is taken place in
each PEs.

Detailed accumulator operation is as follows. At the
right end of the PE array, accumulators composed of an
adder and a register are allocated to sum the PE array
output propagated in the horizontal direction. The ac-
cumulator then outputs the logits in row-parallel, which
represents the non-normalized classification result.

The size of the systolic array corresponds to the num-
ber of columns in the intermediate feature vector being
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Fig. 5.: Matrix Operation Circuit

read out and to the number of rows which is given by the
classification class count. Let’s suppose that the number
of readout pixel columns is W, the kernel size for both
rows and columns is F', and the number of classification
classes is K. The size of the systolic array is determined
as W/F columns (where W is a multiple of F) and K
rows. For example, when a readout pixel array is 96 x 96
and the convolutional kernel size is 3 x 3, the number of
columns and rows in the intermediate feature vector are
both 96/3 = 32. The systolic array operation finishes in
K +W/F clock cycles to process all intermediate feature
vectors. The classification results, logits, are then out-
putted from the accumulator.

IV. CIrcuIlT AREA EVALUATION

This section reports the area evaluation results of the
matrix computation circuit, which is as a major additional
circuit to the conventional CIS. In this study, since we
constrain the additional circuit area for the entire CIS
chip, resulting from the matrix computation circuit, to
be less than 10%, the on-chip NN is designed for small-
scale image classification tasks.

As the small-scale image, we suppose three open
datasets: MNIST [5], Fashion-MNIST [6], and INRIA-
Person [7]. The MNIST dataset consists of a 10-class
handwritten digit classification task (digits 0-9), contain-
ing 60,000 training images and 10,000 evaluation images.
The Fashion-MNIST dataset consists of a 10-class fashion
item classification task, containing 60,000 training images
and 10,000 evaluation images. Both datasets have a 1:1
aspect ratio of images. The INRIA-Person dataset is a
binary classification task, distinguishing between images
with and without human presence. The dataset contains
4,760 training images and 1,579 evaluation images, whose
aspect ratio is 1:2.

For the MNIST and Fashion-MNIST with 1:1 aspect
ratio images, 36 matrix computation circuits were de-
signed in Verilog HDL. The column counts of the PE
array were 8, 16, 32, and 64, while the row counts, rep-

resenting the classification class count, ranged from 2 to
10. The ROHM 0.18 um Kyoto University/Kyoto Insti-
tute of Technology library [8] was used, and logic syn-
thesis was performed with Synopsys Design Compiler Q-
2019.12-SP1 to evaluate the circuit area. The bit widths
of the intermediate feature values and weights were set to
8-bit signed integers. Table I presents the circuit area
of the matrix computation circuit, where the number
of gates obtained through logic synthesis is expressed in
terms of NAND gates. When a small-sized CIS, such as a
1/2.5” optical format with an area of 25 mm?, is assumed,
the circuit area of the matrix computation circuit is con-
strained to be less than around 2.5 mm?. Since the NAND
gate size in the standard cell library is 12.9 um?, the gate
count of the matrix computation circuit is constrained to
be less than 194 kGE. The gate counts less than 194 kGE
are shaded in gray in Table I. As long as the column
count of the PE array is 8 or 16, the matrix computation
circuit can support up to 10 classification classes. With a
column count of 32, the circuit can support up to 5 clas-
sification classes. However, the circuit area exceeds the
constraint when the column count reaches 64. Addition-
ally, it is noted that classification accuracy decreases as
the PE column count decreases, since the NN becomes
shallower and fails to extract complex features.

For the INRIA-Person dataset with 1:2 aspect ratio im-
ages, 3 matrix computation circuits were designed in Ver-
ilog HDL. The column counts of the PE array were 8, 16,
and 32, while the row counts, representing the classifica-
tion class count, are 2.

The gate counts less than 194 kGE are also shaded in
gray in Table II. Since the INRIA person dataset is de-
signed for binary classification, column counts of up to 32
can be supported within the area constraint. This paper
focuses on evaluating the matrix computation circuit area
for the fully connected layer. The area of additional blocks
such as the filter computation circuit will be considered
in future work.

TABLE 1
: synthesis area [kGE]
(aspect ratio = 1:1)

PE columns
Number of
classes 8 16 32 64
2 14.4 35.2 96.1 298.0
3 20.4 483 126.7 376.9
4 26.5 61.6 157.4 455.7
5 32.6 75.0 188.1 534.6
6 38.8 88.2 218.9 613.5
7 44.9 101.5 249.6 692.5
8 51.0 114.8 280.3 771.4
9 57.1 128.1 311.1 850.3
10 63.3 141.4 341.8 929.3
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V. SIMULATION-BASED ACCURACY EVALUATION

A. Simulation Setup

This section presents the software simulation results to
evaluate the image classification accuracy based on matrix
computation circuit sizes. Image classification accuracy
was evaluated using three open datasets for small-scale
image classification tasks: MNIST, Fashion-MNIST, and
INRIA-Person. The input image size (readout pixel size)
depends on the systolic array size. The number of PE
columns is given by W/K, where it is reminded that W
and K represent the readout pixel columns and the convo-
lution filter size, respectively. In the simulation, the filter
size is set to 3 x 3. When the input image size exceeds
that of the original dataset, it is upscaled using bilinear
interpolation while preserving the aspect ratio.

In the simulation, the weights of the convolutional layer
are given with random number and kept fixed. Mean-
while, the weights of the fully connected layer are trained
using gradient descent with the training dataset. Tensor-
flow [9] was used for the simulation, and the classification
accuracy was calculated as the average of 10 independent
runs for each configuration.

B. Simulation Results

Fig. 6 shows the dependency of image classification ac-
curacy on the matrix computation circuit area, where
the datasets are MNIST, Fashion-MNIST, and INRIA-
Person. The vertical axis represents the classification
accuracy, while the horizontal axis represents the cir-
cuit area. The constraint on the maximum area of the
matrix computation circuit, 194 kGE, is indicated by a
dashed line. It is confirmed that image classification accu-
racy improves as the matrix computation circuit gate size
increases. In the MNIST and Fashion-MNIST 10-class
classification, the image classification accuracy reaches
88.75% and 79.91%, respectively, with a PE column count
of 16 see Table I. In the INRIA-Person 2-class classifi-
cation, the image classification accuracy reaches 83.79%,
with a PE column count of 32 see Table II. These results
suggest that the proposed three-layer neural network is
robust to variations in the input image aspect ratio but
exhibits a dependency on the matrix computation circuit
area. Table IIT summarizes the comparison of on-chip im-
age classification systems. the proposed system achieves

TABLE II
: synthesis area [kGE]
(aspect ratio = 1:2)

PE columns

Number of
classes 8 16 32
2 ‘ 16.9 41.5 122.0
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Fig. 6.: Trade-off between classification accuracy and ma-
trix computation circuit area

an image classification accuracy of 88.75% for the MNIST
dataset, which is lower than that of existing CNN-based
implementations such as Jeong et al. However, unlike
their face detection-focused analog CNN, our system tar-
gets general-purpose small-scale classification tasks and
is designed for compact implementation. In the proposed
system, the convolution weights are randomly fixed, which
contributes to a reduction in the classification accuracy.
However, this design simplifies implementation because
analog circuits do not easily support weight reconfigura-
tion. In contrast, the digital fully connected layer allows
flexibility, such as using trained weights and changing the
number of classes. To evaluate the power efficiency of
the proposed system, a logic-level power estimation was
conducted using Synopsys Design Compiler. The result
shows that the matrix computation circuit consumes ap-
proximately 5.97 uW when operating at 6.67 kHz. This
estimation is based on 50 us of one pixel row readout pe-
riod and 150 us of one row of intermediate feature vec-
tor processing period generated from three pixel row sig-
nals. These results suggest that the proposed system is
highly feasible for low-power, small-scale image classifica-
tion tasks.

VI. CONCLUSION

This paper proposed an on-chip image classification sys-
tem that integrates lightweight neural networks within a
CIS. The system combines in-pixel and in-column analog
convolution with digital matrix computations, enabling
direct feature vector processing within the CIS. Direct fea-
ture vector computation within the CIS reduces communi-
cation overhead and system power consumption compared
to MCU-based classification. To evaluate the feasibility of
the proposed on-chip image classification system, we eval-
uated the matrix computation circuit area and the image
classification accuracy through software simulation. In
the circuit area evaluation, the matrix computation cir-
cuit supports up to 10 classification classes for a 1:1 as-
pect ratio image when the PE array column count is 8
or 16, and up to 5 classes with 32 columns. For a 1:2
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TABLE III

: Comparison of On-Chip Image Classification Systems

Nakamura et al. (2024)[1]

Jeong et al. (2023)]3]

Proposed (PE=16,
MNIST)

Digital Area (mm?) N/A N/A ~ 2.5 mm? }
Accuracy (%) N/A Up to 98.75 (Face Detection, 88.75 (MNIST, Simulated)
Measured)
90.4 @ 200fps 4.02 @ 120fps Not evaluated
Power (mW) (Estimated, (Measured, (only logic-level estimation
DNN inference) analog CNN inference) for fully connected layer)
Process N/A 110 nm CMOS 180 nm CMOS
Architecture 3-wafer stacked Monolithic Monolithic (not fabricated)
CNN type MobileNet V2 Fully analog 3-layer 3-layer (analog conv. +
digital fully connected)
Hardware Dedicated digital waferf In-column analog MAC Logic synthesis only (fully
Configuration (DNN + SRAM) connected layer)

Note: ”N/A” indicates that the information is not available or not disclosed in the referenced paper.
T DNN circuit is integrated in the bottom wafer of a 3-wafer-stacked CIS, but its area is not separately disclosed.
iEstimated from logic synthesis of the fully connected layer only. Not representative of total area.

aspect ratio image and 2-class classification, 32 columns
PE can be supported under a given area constraint. In
the image classification accuracy evaluation, the accuracy
reached 88.75% and 79.91% for the MNIST and Fashion-
MNIST 10-class classifications, with a PE column count
of 16. The image classification accuracy reached 83.79%
for the INRIA-Person 2-class classifications, with a PE
column count of 32. It was also confirmed that increasing
the number of columns in the matrix computation circuit
improves the classification accuracy. In future work, we
will improve the circuit configuration to reduce the ma-
trix computation circuit. Additionally, we will explore
classification tasks suited for small-scale neural networks
on the CIS chip.
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